
 

Electronic Coherence in Ultrafast X-Ray Scattering from Molecular Wave Packets

Mats Simmermacher, Niels E. Henriksen, and Klaus B. Møller*

Department of Chemistry, Technical University of Denmark, 2800 Lyngby, Denmark

Andrés Moreno Carrascosa and Adam Kirrander†

EaStCHEM, School of Chemistry, University of Edinburgh, EH9 3FJ Edinburgh, United Kingdom

(Received 31 August 2018; published 22 February 2019)

Simulations of nonresonant ultrafast x-ray scattering from a molecular wave packet in H2 are used to
examine and classify the components that contribute to the total scattering signal. The elastic component,
which can be used to determine the structural dynamics of the molecule, is also found to carry a strong
signature of an adiabatic electron transfer that occurs in the simulated molecule. The inelastic component,
frequently assumed to be constant, is found to change with the geometry of the molecule. Finally, a
coherent mixed component due to interferences between different inelastic transitions is identified and
shown to provide a direct probe of transient electronic coherences.
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X-ray scattering plays a critical role in the determination
of the structure of matter [1], and its extension into the
temporal domain opens a window onto the structural
dynamics of chemical and physical transformations [2–4].
The emergence of x-ray free-electron lasers (XFELs) [5–7]
means that ultrafast x-ray scattering now rivals the time-
resolution of ultrafast spectroscopies and can probe the
structural dynamics of fundamental chemical events such as
the breaking of bonds, molecular vibrations, isomerization,
and solvation [8–14]. However, photochemical and photo-
physical processes are governed by a complex interplay of
nuclear and electronic motion, and structural dynamics
alone does not tell the full story [15,16].
The opportunity for x-ray scattering experiments that

exploit the short duration and coherence of XFEL pulses to
reach beyond structural dynamics [17–20] is explored in
this Letter. Via accurate simulations of scattering from a
molecular wave packet, we identify three distinct contri-
butions to the total scattering signal: elastic, inelastic, and
coherent mixed. The coherent mixed component is quali-
tatively different from the other two. It relies on interfer-
ences between different coherently populated electronic
states and displays the same distinctive features as the
scattering predicted for electronic wave packets in atoms
[21–23]. In a molecule, these features are found to provide
a direct signature of transient electronic coherences and
could be exploited to characterize the evolution of molecu-
lar wave packets at avoided crossings, conical intersections,
or during partial revivals. This Letter provides the first
predictions of how this type of signal might appear on the
detector in an experiment. In the course of making this
detailed analysis, important aspects of the elastic and
inelastic scattering are uncovered.
Ultrafast nonresonant x-ray scattering is described by

first-order perturbation theory and in terms of a fully

quantized description of the x-ray pulse [21,24–27]. The
time-resolved differential x-ray scattering signal dσ=dΩ per
solid angle Ω for a general material system is, then,
given by

dσ
dΩ

¼
�
dσ
dΩ

�
Th

ZZZ
ωs

ω0

IðtÞCðδÞeιðω0−ωsÞδ

× Lðq; t; δÞdδdωsdt; ð1Þ

where ðdσ=dΩÞTh is the differential Thomson scattering
cross section of the free electron, IðtÞ the photon number
intensity, and CðδÞ the linear coherence function of the x-
ray probe pulse with their corresponding times t and δ, and
ω0 and ωs are the angular frequencies of incident and
scattered photons. The quantity Lðq; t; δÞ defines the
scattering probability and is analogous to the dynamic
structure factor Sðq;ω0 − ωsÞ [28]. It is expressed as

Lðq;t;δÞ¼hΨðtÞjeιĤMδ=2ℏL̂†e−ιĤMδ=ℏL̂eιĤMδ=2ℏjΨðtÞi; ð2Þ

where ℏ ¼ h=2π is Planck’s constant, ι the imaginary unit,
and the bracket implies integration over all electronic
r̄ ¼ ðr1;…; rNe

Þ and nuclear R̄ ¼ ðR1;…;RNat
Þ coordi-

nates. Furthermore, Eq. (2) contains the time-dependent
wave function jΨðtÞi, the field-free molecular Hamiltonian
ĤM, and the electronic scattering operator L̂ ¼ P

ne
ιqrn,

with the scattering vector q ¼ k0 − ks taken as the differ-
ence between the wave vectors of the incident and scattered
photons.
The drawback of Eq. (1) is that it is unwieldy for

actual calculations and provides little physical insight
into the scattering process. We therefore introduce an
explicit Born-Huang form for the molecular wave function
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hr̄; R̄jΨðtÞi ¼ Ψðr̄; R̄; tÞ ¼ P
N
i χiðR̄; tÞφiðr̄; R̄Þ expressed

in a direct-product basis of electronic eigenfunctions
φiðr̄; R̄Þ and nuclear wave packets χiðR̄; tÞ. Furthermore,
we assume that scattering involving rovibrational transitions
is not resolved. This allows us to expand Eq. (2)
using the resolution of identity for electronic states, 1̂ ¼P

fjφfðR̄ÞihφfðR̄Þj, and to evaluate the effect of the
molecular Hamiltonian on the electronic eigenstates as
e−ιĤMδ=ℏφiðr̄;R̄Þ≈e−ιViðR̄Þδ=ℏφiðr̄;R̄Þ with ViðR̄Þ the eigen-
values of the electronic Hamiltonian. These assumptions
yield

Lðq; t; δÞ ≈
XN
i;j

X∞
f

eιωfijδ

Z
χiðR̄; tÞ χ�jðR̄; tÞLfiðq; R̄Þ

× L�
fjðq; R̄ÞdR̄; ð3Þ

where Lfiðq; R̄Þ ¼ hφfðR̄ÞjL̂jφiðR̄Þi ¼ hφiðR̄ÞjL̂†jφfðR̄Þi�
and ωfij¼ðVf−½ViþVj�=2Þ=ℏ with the electronic eigenval-
ues evaluated at equilibrium geometry, e.g., Vi ¼ ViðR̄0Þ.
A final simplification is achieved if we recognize that the

difference in energy of the incident and the scattered
photons is small in comparison to the mean photon energy
of the x-ray pulse, ωs ≈ ω0, which renders the q vector
independent of ωs [29] (indicated by q̃, henceforth). This
allows us to simplify the integrals overωs and δ in Eq. (1) to
obtain a window function WfijðΔωÞ (see Supplemental
Material (SM) [30]). The detection window Δω defines the
range of detected photons around the mean ω0.
Combining these results, we arrive at a compact and

computationally practical expression which offers signifi-
cant physical insight

dσ
dΩ

≈
�
dσ
dΩ

�
Th

XN
i;j

X∞
f

WfijðΔωÞ
Z

IðtÞ
Z

χiðR̄; tÞχ�jðR̄; tÞ

×Lfiðq̃; R̄ÞL�
fjðq̃; R̄ÞdR̄dt: ð4Þ

Three contributions to the x-ray scattering signal can be
identified in Eq. (4): elastic (i ¼ j ¼ f), inelastic
(i ¼ j ≠ f), and coherent mixed (i ≠ j, any f). The same
partitioningwas previously used byCao andWilson [17] and
by Mukamel et al. [18,19]. The elastic and inelastic compo-
nents are related to the probability density of the nuclear
wave packet on each electronic state j χiðR̄; tÞj2 and to the
absolute square of the scattering matrix elements
jLfiðq̃; R̄Þj2. The inelastic matrix elements are smaller
than the elastic, but become significant when summed and
cannot be generally neglected. The coherent mixed compo-
nent, in turn, is an interference effect with no correspondence
in standard x-ray scattering. It is due to inelastic
transitions from the occupied states i and j to a third state
f, weighted by the nuclear wave packet overlap density
χiðR̄; tÞ χ�jðR̄; tÞ. The strongest contribution comes from

terms with f ¼ i or f ¼ j, where one of the matrix elements
is elastic and, thus, large. These interferences, mediated by
the inelastic scatteringmatrix elements, are intramolecular in
a noncrystalline sample [18–20,46].
We explore the behavior implied by Eq. (4) in

realistic simulations of H2, a benchmark molecule [47]
whose stationary elastic and inelastic x-ray scattering has
been measured recently [48,49]. A schematic outline of the
simulations is shown in Fig. 1 with details provided in the
SM[30]. The time-evolution of themolecule is calculated by
numerically integrating the time-dependent Schrödinger
equation with the WAVEPACKET code [31] using accurate
potential energies, dipole transition moments, and masses
[33–36]. A 14.3 eV transform limited pump pulse with 25 fs
duration (FWHM) centered at time t ¼ 0 fs with peak
intensity 7.69 × 1012 W=cm2 is included explicitly and
excites a B1Σþ

u ← X1Σþ
g ðν ¼ 0Þ wave packet with 10%

population transfer from the ground state. A similar wave
packet has been observed experimentally [50]. While the
ground state is simply depleted by the pump pulse and
remains essentially stationary, the nuclear component on the
electronic B state oscillates between the inner and outer
turning points with a vibrational period of Tvib ≈ 62 fs.
To determine the scattering signal by means of Eq. (4),

the elastic and inelastic scattering matrix elements
Lfiðq̃; RÞ are calculated among the nine lowest-energy
electronic singlet states using our own code [41,42]. The
electronic wave functions are obtained by state-averaged
CASSCF(2,30)/d-aug-cc-pVQZ in MOLPRO [40] (see SM
[30]). The x-ray pulse is taken to be coherent and transform
limited with duration dx ¼ 0.1 fs (FWHM), its mean
photon energy ℏω0 ¼ 8.5 keV, and a detection window
of ℏΔω ¼ 50.0 eV is assumed. The molecule is aligned

FIG. 1. Schematic of the proposed experiment. An extreme
ultraviolet (XUV) pump pulse excites a wave packet from the
X1Σþ

g ground state of H2 (blue curve) onto the B1Σþ
u state (red

curve). The ground state nuclear wave packet remains stationary,
while the B-state wave packet oscillates between the inner and
outer turning points as shown in the contour plot of the
probability density j χBðR; tÞj2 as a function of internuclear
distance R (Å) and time t (fs). The potential energy curves V
(eV) of the two states are shown. After excitation, an x-ray pulse
probes the system by nonresonant ultrafast scattering.

PHYSICAL REVIEW LETTERS 122, 073003 (2019)

073003-2



with the laboratory x̂ axis and the incident x-ray pulse
propagates along the laboratory ẑ axis, while scattering
images are calculated in the ðqx; qyÞ plane. Difference
(pump on − pump off) images of the elastic, inelastic, and
coherentmixed components of the scattering signal are shown
inFig. 2 at delay-times 1

2
Tvib,Tvib, and 3

2
Tvib corresponding to

the outer, inner, and outer turning points of the wave packet.
Now, we will discuss each of the contributions in turn.
The elastic component is shown in the top row of Fig. 2.

This contribution is the largest, especially at small scatter-
ing angles, and the images are centrosymmetric as expected
from Friedel’s law [51]. Importantly, the signal relates to
the Fourier transform of the electron density and can be
inverted to provide the spatiotemporal structural dynamics
of the molecule [26,52]. The images are negative at all
pump-probe delays, reflecting that the electron density of
the excited molecule is more diffuse than for the unpumped
ground-state molecule. The time-dependent changes in the
elastic pattern reflect the changes in the electron density as
the nuclear wave packet on the electronic B state oscillates
between the inner and outer turning points. Isosurfaces for

the net electron density associated with the B-state com-
ponent of the wave packet are shown in Fig. 3 at three
different times that correspond to increasing internuclear
separation. It is notable that the electron density is more
compact at large internuclear distances due to adiabatic
electron transfer resulting in a strong ion-pair character
HþH−ð1s2Þ and a marked deviation from the common
independent atom model [45].
The inelastic component shown in the middle row of

Fig. 2 displays the same centrosymmetry as the elastic
pattern but is weaker overall. The values of the inelastic
difference signal aremainly positive, reflecting that inelastic
transitions from the B state are more likely than from
the ground state. The most interesting observation is that
the inelastic signal changes significantly in the course of the
dynamics. This is due to the fact that the inelastic scattering
matrix elements change as a function of the internuclear
distance. In H2, the magnitude of the inelastic scattering
matrix elements is largest close to the equilibrium distances
of the corresponding electronic states.
The coherent mixed component is shown in the bottom

row of Fig. 2. It does not share the centrosymmetry of the
elastic and inelastic components but undergoes a sign
change when reflected through the vertical qy axis. This
could be exploited to isolate the coherent mixed component
from the total scattering using Legendre polynomial decom-
position. At its peak, the coherent mixed component has
the same order of magnitude as the inelastic contribution.
It undergoes a modulation with period Tvib ≈ 62 fs that
causes the images at delay times 1

2
Tvib and 3

2
Tvib in Fig. 2 to

be quite faint. This can be seenmore clearly by inspection of
the integrated absolute value of the coherent mixed compo-
nent of the scattering signal ϒðτÞ shown in Fig. 4.
The observed modulation can be traced to the overlap

density factor χBðR; tÞ χ�XðR; tÞ in Eq. (4) and is analogous

FIG. 3. Isosurfaces of the net electron density (see SM [30])
associated with the B-state component of the molecular wave
packet at times Tvib,

5
4
Tvib, and

6
4
Tvib (left to right). The mean

positions of the nuclei are indicated by red circles. The expect-
ation value of the internuclear distance increases from hRi ≈
2.3 Å at the inner turning point, via hRi ≈ 4.1 Å, to hRi ≈ 5.1 Å
at the outer turning point (left to right). Note that the molecule has
been rotated by 90° with respect to Figs. 2 and 5.

FIG. 2. Detector images showing the difference x-ray scattering
patterns (pump on − pump off) for the elastic (top row), inelastic
(middle row), and coherent mixed (bottom row) components of
the scattering signal at pump-probe delays 1

2
Tvib, Tvib, and

3
2
Tvib.

The scattering intensity is given in units of the Thomson
scattering cross section and the norm of the scattering vector
is 0 ≤ q ≤ 4.31 Å−1.
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to transient electronic coherences in molecules ionized
by short duration broadband pulses [43,53]. The
degree of coherence can be characterized by McohðτÞ ¼
Tr½ρ2redðτÞ� −

P
iðρiiredðτÞÞ2, where ρijredðτÞ ¼ h χjðτÞj χiðτÞi

are elements of the reduced density matrix (see SM [30])
[44]. The values of the square root of McohðτÞ for the
current simulations are shown in the top of Fig. 4. They
map perfectly onto ϒðτÞ in the bottom of Fig. 4. It is worth
noting that the decrease of the maxima in the envelope of
the integrated coherent mixed scattering signal provides
quantitative information about the dispersion of the nuclear
wave packet.
Further insight into the nature of the coherent mixed

component is hinted at by the rapid oscillations observed
under the slowly modulating envelope, as shown in Fig. 5.
The period of these oscillations is Telec ≈ 0.3 fs andmatches
the pulse energy that excites themolecule from the ground to
the excited state. The beating is due to interference between
the two electronic states and is also visible in the electron
density, reflected by the transition densities of the X and B
states displayed in Fig. 5. The temporal phase shift between
the observed coherent mixed scattering and the transition
densities is remarkably similar towhat has been observed for
electronic wave packets in the hydrogen atom [21,23].
We should note that the present simulations are as close to

numerical convergence as practically possible, but the
strengths of the inelastic and the coherent mixed compo-
nents relative to the elastic signal are somewhat under-
estimated. Qualitatively, however, the simulation provides
correct results. The symmetries of the patterns, their tem-
poral evolution, and the trends in their changes become
manifest.We also note that the current example is not ideally
chosen from the experimental point of view.The 14.3 eVgap
between the two electronic states causes rapid oscillations
in the coherent mixed part that require subfemtosecond
pulses to be resolved [54]. Moreover, detection of all
transitions within the molecule would cause the coherence

mixed component of the scattering signal to vanish (see SM
[30]), and therefore, it is necessary to ensure that only
photons that excite to the eigenstates with the lowest
energies are detected with significant weight. Finally, at
least partial alignment is necessary to observe the coherent
mixed component and its symmetry-breaking property.
To conclude, our results emphasize the importance of an

appropriate theoretical framework for the interpretation and
design of new ultrafast scattering experiments [19,21,55].
The description embodied by Eq. (4) is suitable for quantum
molecular dynamics simulations and should aid the disen-
tangling of the different components to the total scattering.
Importantly, our calculations of the elastic and inelastic
scattering highlight failures of the independent atom model
commonly used to interpret structural dynamics, while the
observed coherent mixed component points towards new
ultrafast x-ray scattering experiments capable of providing
valuable information beyond structural dynamics. In the
current example, it provides a measure of the dispersion of
the nuclear wave packet at partial revivals, and could be used
to probe transient coherences at conical intersections known
to play a critical role in photochemistry and photophysics. In
general, the coherent mixed scattering gives direct access to
the degree of electronic coherence and associated electron
dynamics and could grow into an important tool for probing
coherence in a wide range of systems.
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FIG. 5. (Top) The coherent mixed part of the scattering
signal, as in Fig. 2, at pump-probe delays Tvib − 1

4
Telec, Tvib,

Tvib þ 1
4
Telec, Tvib þ 2

4
Telec, and Tvib þ 3

4
Telec (left to right).

(Bottom) Illustration of the one-electron transition density
between the X1Σþ

g and B1Σþ
u states and the associated value of

the overlap AðτÞ ¼ Re½h χXðτÞj χBðτÞi�.

FIG. 4. (Top, right axis) Square root of the coherence function
McohðτÞ at different pump-probe delays τ calculated from the
simulatedgroundandexcited statewavepackets of theH2molecule.
(Bottom, left axis) Envelope of the integrated absolute value of the
coherent mixed component of the scattering signal ϒðτÞ.
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