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Preface 

 

Fluorescence interference is an important limitation in Raman spectroscopy. This problem can be avoided 
when the wavelength of the exciting light source is in the range of deep ultraviolet (DUV). DUV Raman 
spectroscopy expands the application field of Raman scattering technology, especially in catalysis, biological 
sciences, food and petroleum analysis. 

Raman spectroscopy is an optical method that reveals the molecular structure by measuring the inelastic 
scattering of light. The development of Raman spectrometry has often depended on a serious of newly 
generated optical techniques. Over the last decade, the laser technology has been developed rapidly. 
Progress in semiconductor technology has occurred and various ultraviolet solid-state and gas lasers have 
appeared, and lasers with different properties, such as pulsed or continuous wave, working in single or 
multi mode have appeared in the commercial market. Different lasers could be suitable only for one 
particular application. A dedicated spectrometer and special optical components may be required, so in 
order to implement a DUV Raman system in practice, one has to deal with much optical knowledge. 

The work presented in this thesis is the result of a Ph.D.-project carried out during a period of about three 
years from November 2008 – December 2011 at the Department of Chemistry, Technical University of 
Denmark. The thesis was written as part of the requirements for obtaining the doctor of philosophy degree. 
It describes the establishment of a DUV Raman system and briefly a few examples of its application to some 
kinds of chemical analysis. 

Chapter 1 is a short introduction to Raman spectroscopy done with visible as well as ultraviolet light. 
Chapter 2 is devoted to the introduction of all different types of deep ultraviolet (DUV) lasers and the 
corresponding optical properties, including a representative overview of the state-of-the-art DUV lasers 
and possible development of new DUV sources. Chapter 3 aims at the describing and understanding of the 
detailed function of the DUV spectrometer and some of its associated DUV optical components. 
Furthermore the thesis reports a chapter 4 describing original work done to make it possible to easily 
compare the spectral resolution of a DUV Raman spectrometer with that of a similar visible instrument. 
This part of my work has recently been accepted for publication (after some minor changes) in a well-
estimated international journal (Applied Spectroscopy). The developed software needed to do the 
calculations is included in an appendix. Chapter 5 is devoted to a chemical analysis example: the analysis of 
gasoline. Chapter 6 is concerned with other applications, including such varied research areas as Sudan I, 
Melamine, Germanium nanocrystals and Silicon Carbide analysis. Some of these examples are not treated 
in depth in this thesis because the subjects have been described by us in recently published research 
papers (see the list on the last page).  

Many people have contributed valuable help and support to my work during the last three years. I would 
like to take the opportunity to express my true gratitude to all of them. First of all, I would like to thank my 
supervisor Dr. Rolf W. Berg for highly consistent and inspirational guidance. I would also like to 
acknowledge Dr. Jens. E. T. Andersen for giving me access to his UV-Vis spectrophotometer, Ishaq 
Khaliqdad for providing the help and excellent mechanical assistance in the workshop, Preben Buchhave for 
fruitful discussions with respect to the DUV light sources, Haiyan Ou and Yiyu Ou for stimulating discussions 
and sharing with me the knowledge about Germanium nanocrystals and Silicon Carbides, Dr. Boriana 
Mihailova for technical assistance during my stay at the Institute of Mineralogy and Petrography, in 
Hamburg University. 

Finally I would like to express my special appreciation to my family, my wife Li Yang and our daughter Amy 
for their understanding and support through these years. 
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Abstract 
 

The present thesis, “Implementation of Deep Ultraviolet Raman Spectroscopy”, mainly contains two 
sections. Deep Ultraviolet here is named DUV standing for the wavelength range from 200 to 300 nm. The 
first section, Chapters 1, 2, 3 and 4, is about the instrumental technology of the DUV Raman system; the 
second section, Chapters 5 and 6, is devoted to some application examples of the DUV Raman 
spectroscopy. 

Chapter 1 is a brief introduction of Raman spectroscopy in general and its relation to DUV. The DUV Raman 
spectrometry has many remarkable advantages. The major limitations are the difficulty of the DUV Raman 
instrumentation, the DUV excitation laser source, DUV optical components, eventual instability of the 
sample and the non-transparency of ordinary glass containers. With respect to the first limitation, most 
lasers do not directly emit the DUV lines. The DUV lines can typically be obtained by means of frequency 
conversions that are implemented by optical nonlinear processes as well as Second Harmonic Generation 
(SHG) or higher order harmonic generations. Chapter 2 aims at investigating three main type lasers, 
semiconductor, solid-state and gas lasers, to recognize the different ways to implement the DUV emission. 
The important optical properties as well as the laser beam quality, line width, emission wavelength, output 
power and pulsed / CW operation of each kind of laser were discussed to help to choose the best suitable 
light source.  With respect to semiconductor lasers, the most compact DUV laser has been reported to be 
the use of the waveguide SHG technique with a 266 nm emission wavelength. This deeper wavelength has 
become possible to be obtained due to recent developments of blue semiconductor lasers. However, at 
present the probably best commercial laser - at the price – is a DUV laser in which the line is achieved by a 
highly complex frequency quadrupling device. Such a laser is obtainable as a product from TOPTICA 
Photonics. With respect to the solid-state laser possibility, we devoted ourselves to distinguish between 
wavelength tuneable and un-tuneable lasers. With respect to gas lasers, we have focused on introducing 
two types of lasers: hollow cathode metal ion lasers and Argon ion lasers. The hollow cathode metal ion 
lasers emit DUV lines directly, however one should consider the poor beam quality and the relatively weak 
output powers possible and only for particular applications. A frequency-doubled Argon ion laser (95-SHG-
QS) manufactured in USA by LEXEL-lasers, Inc. was finally adopted for our project. The basic structure and 
technological principles of the laser are discussed in detail as these are important requisites to safely 
understand the physics needed to change among the several lines (257.3, 244.0 and 229.0 nm) possible for 
a frequency-doubled Argon laser.  

Chapter 3 is devoted to establishing a DUV Raman system - made by Renishaw PLC - associated with the 
adopted DUV laser. The chosen Renishaw InVia Reflex spectrometer was the best spectrometer that could 
be obtained for the available amount of money. Compared with a traditional Raman system working in the 
range of visible or near Infrared, the chosen DUV Raman system requires more stringent conditions for the 
optical components. The various DUV optical components have been described, with particular focus on 
obtaining high quality of the final measurements. This naturally involves themes such as spectral resolution, 
sensitivity, elimination of background noise, and so on. Compared to Raman spectra excited with visible 
light, the DUV excited Raman spectra tend to have a markedly lower spectral resolution. The spectral 
resolution is an important factor to consider when using the DUV excited Raman spectroscopy. In line with 
this insight is the fact that we found a way to improve the knowledge on the spectral resolution of the DUV 
excited spectrum. A new method was invented during the project to determine the spectral resolution of 
Raman spectrometers by means of principal experimental factors and one equation. This equation is 
described in detail in chapter 4, and the associated Mathematica program is detailed in the appendixes. A 
manuscript on the same subject has been accepted for Applied Spectroscopy. 
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The DUV Raman system was established so that it is possible to apply several different excitation lines, and 
even some visible lines can be included. The operating convenience was considered carefully to realize the 
most user-friendly Raman system. The laser safety was also discussed, because DUV light is a potentially 
extremely dangerous kind of invisible radiation, and several personnel protection methods have necessarily 
to be presented. 

The fluorescence interference is a persistent problem in Raman spectroscopy. It was met before many 
times when the wavelengths of excitation lasers are located in the visible range, e.g. for petroleum product 
analysis. Deep Ultraviolet Raman spectroscopy applied to this research field was claimed to be able to solve 
the problem. Chapter 5 is devoted to gasoline analysis by the use of the DUV Raman spectroscopy. Firstly, 
some sampling difficulties (absorption, condensation) are described. We have found a way to solve the 
problems, and our solution, using a special designed gas gap cell to obtain measurements of extraordinary 
high quality, are presented. The DUV Raman spectra of gasoline were excited by three different 
wavelengths, 257.3, 244.0 and 229.0 nm were measured. The results showed that the spectra obtained by 
use of the 257.3 nm excitation line are useless because of strongly fluorescent interferences; the spectra of 
the 244.0 nm excitation contained less fluorescent backgrounds and obtainment of clear Raman bands 
were possible; finally the fluorescent interference was completely eliminated by use of the 229.0 nm 
excitation line. Obviously, the spectra were different when using the 244.0 and 229 nm excitation lines.  

By study of the Raman spectra of Toluene / Pentane mixtures using the 229 nm excitation, it is clear that 
Toluene dominated spectra of the mixtures because of resonance Raman scattering. By study of the Raman 
spectra of Toluene / Naphthalene mixtures using the 229 nm excitation, the results showed that 
Naphthalene has an even stronger resonance. It was concluded that a small content (~0.5%) of 
Naphthalene was able to mainly dominate the Raman spectra of the gasoline samples. It is virtually 
unimportant what the rest of the sample consisted of. The most intense characteristic band is located at 
1381 cm-1. The Raman spectra of home-made artificial gasoline mixtures - with gradually increasing 
Naphthalene contents - can be used to determine the concentration of Naphthalene by use of the 229.0 
nm excitation. For the Raman spectra of gasoline excited by the 244 nm line, Toluene and Naphthalene 
have comparable contributions. The intensity of the respective characteristic bands at 1004 cm-1 and 1381 
cm-1 indicate the relative concentrations of the aromatics, Toluene and Naphthalene, in the gasoline. 

Chapter 6 shows examples of other applications of DUV Raman spectroscopy, for instance for the illegal red 
food additive: Sudan I. For this dye Raman spectra - useful to indicate an unwanted presence - could not be 
obtained with green or blue laser line excitation because of fluorescence interferences. Raman spectra of 
Sudan I - without fluorescence interferences - could be achieved by use of the 244.0 nm excitation. The 
DUV Raman spectrometry could thus be a potential detection method for Sudan I, as an illegal food 
colorant. The fluorescence-free DUV Raman spectrometry was further applied to detect another illegal 
food additive, Melamine, in milk sample. It was shown that the DUV constitutes a more sensitive 
measurement method than traditional Raman spectrometry and realizes a direct detection in liquid milk. In 
another research field regarding solid state analysis of Germanium and Silicon Carbide nanocrystals, the 
application of the DUV excited Raman spectroscopy as a research tool has also been demonstrated and the 
results are only rather briefly discussed because the results have already been published.   

Obviously many more uses can be predicted. 
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Resumé 

 

Denne afhandling, "Implementation of Deep Ultraviolet Raman spectroscopy”, består i hovedsagen af to 
dele. Deep Ultraviolet – også kaldt DUV – står for bølgelængdeområdet 200 til 300 nm. Første del, 
kapitlerne 1 til 4, handler om den instrumentelle teknologi i DUV Raman-systemet. Anden del, kapitlerne 5 
og 6 fokuserer på nogle få anvendelser af DUV Ramanspektroskopien. 

Kapitel 1 giver en kort introduktion til Ramanspektroskopi i almindelighed og DUVs relation hertil. DUV 
Ramanspektrometrien har mange bemærkelsesværdige fordele. De største begrænsninger ved DUV Raman 
er sværhedsgraden med hensyn til instrumentering, eventuel ustabilitet af prøverne ved belysningen og 
den manglende gennemsigtighed af almindelige glasbeholdere. Med hensyn til det første problem: De 
fleste lasere er ikke direkte i stand til at udsende DUV-lys. Dybt ultraviolet laserlys opnås i mange tilfælde 
bedst ved hjælp af frekvenskonvertering af andet laserlys. Dette kan typisk ske ved anvendelse af optisk 
ulineære processer, herunder såkaldt Second Harmonisk Generering (SHG) eller eventuelt højere orden af 
harmonisk generering. Kapitel 2 tager sigte på at beskrive de tre grundtyper af lasere der kan komme på 
tale: halvlederlasere, faststoflasere og gaslasere. Formålet har været at fastslå de mest hensigtsmæssige 
måder at fremskaffe anvendelig DUV emission. Vigtige optiske egenskaber ved laserstråler, så som kvalitet, 
liniebredde, bølgelængde, udgangseffekt og tidsforløb - pulserende / eller kontinuert (såkaldt CW-emission) 
- af hver laser-type diskuteres med det formål at vælge den bedst egnede DUV lyskilde til projektet. Med 
hensyn til halvlederlasere nævnes, at den mest kompakte DUV laser udviklet til dato, bruger den såkaldte 
waveguide SHG teknik til at opnå 266 nm emission. Den formentlig bedste laser på markedet – prisen taget 
i betragtning - er et system der frembringer DUV linier ved en meget kompleks frekvens-4-doblings teknik. 
En sådan laser produceres af TOPTICA Photonics. Med hensyn til faststoflasere, har vi helliget vi os 
beskrivelse af to typer af lasere, nemlig dels dem hvis bølgelænde er vilkåligt justerbar (tuneable) og dels 
dem der har faste karakteristiske bølgelængder (diskrete laserlinier). Med hensyn til gaslasere, er 
hovedvægten lagt på to typer af lasere: hul-katode metal-ion-lasere og argon-ion gas-lasere. Hul-katode 
metalion lasere er i stand til direkte at udsende DUV-linier, men man bør overveje den dårlige strålekvalitet 
og den relativt svage intensitet, der begrænser anvendelsen. Det endelige valg til vores projekt – prisen 
taget i betragtning – faldt på en frekvens-fordoblet argon ion laser (95-SHG-QS) produceret i USA af firmaet 
LEXEL-lasers, Inc. Den grundlæggende struktur og de teknologiske principper omkring en sådan laser er 
diskuteret i detaljer, således at de fysiske aspekter ved omskiftning mellem SHG linierne (257.3, 244.0 og 
229.0 nm) kan ske sikkert. 

Kapitel 3 er afsat til en detaljeret indførelse i, hvordan et DUV Ramansystem - fremstillet og leveret af 
Renishaw, Plc. - fungerer, under anvendelse af den anskaffede DUV laser. Det valgte Renishaw InVia Reflex 
spektrometer var det bedste, der kunne opnås for det disponible beløb. Sammenlignet med et traditionelt 
Ramansystem i det synlige eller nært-infrarøde område stiller det valgte DUV-Ramansystem strengere krav 
til optikken. De forskellige DUV optiske komponenter er gennemgået med særlig fokus på kvaliteten af de 
endelige målinger. Dette indebærer naturligvis temaer så som spektralopløsning, følsomhed, eliminering af 
baggrundsstøj, og så videre. I sammenligning med Ramanspektre ekciteret med synligt lys er der en 
tendens til, at DUV Ramanspektre fremstår med markant lavere spektralopløsning. Dette vigtige emne er 
nærmere studeret. I løbet af projektet er der blevet udviklet en ny metode til at fastslå spektralopløsningen 
af et givet Ramanspektrometer ved hjælp af de vigtigste eksperimentelle parametre og brug af én eneste 
ligning. Den spektrale opløsning er en vigtig faktor at tage i betragtning ved anvendelse af DUV Raman. I 
denne forbindelse anføres det faktum, at vi på denne måde har forbedret vores kendskab til den spektrale 
opløsning i DUV-Ramanspektre, som ellers havde tendens til at være ret begrænset. Detaljerne er 
beskrevet i kapitel 4 og det tilhørende Mathematica computer-program er gengivet i appendixes. En artikel 
om spektralopløsningen i et Ramanspektrometer er antaget til publicering i Applied Spectroscopy. 
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DUV Ramansystemet er etableret, således at det er muligt at anvende flere forskellige excitationslinier, og 
endda kan nogle synlige linier også omfattes. Betjeningen er blevet nøje overvejet, så Ramansystemet er 
blevet så brugervenligt som muligt. Det vigtige punkt omkring lasersikkerheden er ligeledes blevet 
diskuteret, eftersom DUV lys er en potentielt meget farlig form for usynlig stråling. Flere metoder til 
personbeskyttelse har nødvendigvis måttet præsenteres. 

Indflydelsen fra fluorescens er et vedvarende problem i Raman, f.eks. møder man problemet under analyse 
af olieprodukter med lasere med excitationsbølgelængder i det synlige område. DUV Ramanspektroskopi 
anvendt inden for dette felt har været hævdet at kunne løse fluorescensproblemet. Dette undersøges i 
Kapitel 5, der er helliget emnet ”benzinanalyse ved brug af DUV Ramanspektroskopi”. I begyndelsen af 
kapitlet beskrives nogle uforudsete problemer med prøvetilberedelsen (absorption og kondensation) og 
deres løsning. Vi har fundet en måde at løse problemerne på ved hjælp af en specielt designet celle med et 
”gasgab”. Med denne celle er det lykkedes at gennemføre målinger på benzin af en hidtil ukendt kvalitet. 
DUV Ramanspektrene af benzin blev forsøgt opnået med de tre forskellige bølgelængder, 257,3, 244,0 og 
229,0 nm. Resultaterne viser, at spektre opnået ved brug af 257,3 nm linien er ubrugelige på grund af for 
stærke interferenser af fluorescens; spektret fra 244,0 nm excitation indeholder en mindre 
fluorescensbaggrund og tydelige Ramanbånd kan ses. Endelig er interferens fra fluorescens elimineret ret 
meget ved brug af 229,0 nm excitationslinien. Spektrene er klart forskellige, også når blot 244,0 og 229 nm 
excitationslinierne bruges. 

Ved undersøgelsen af Ramanspektrene af Toluen / Pentan blandinger ved hjælp af 229 nm excitation, er 
det blevet klarlagt, at toluen dominerer spektrene af alle blandingerne på grund af resonans-
Ramanspredning. Ved undersøgelse af Ramanspektrene af Toluen / Naphthalen blandinger ved hjælp af 
229 nm excitationen viser resultaterne yderligere, at Naphthalen har en endnu stærkere resonans-
Ramanspredning. Det er blevet konkluderet, at et lille indhold (0,5 %) af Naphthalen hovedsageligt 
dominerer Ramanspektrene af almindelige benzinprøver. Det er sådan set ligegyldigt hvad resten er. Det 
mest intense karakteristiske band er placeret ved 1381 cm-1. Ramanspektre af hjemmelavede kunstige 
benzinprøver med gradvist stigende indhold af Naphthalen kan bruges til at bestemme koncentrationen af 
Naphthalen ved brug af 229,0 nm excitationen. I Ramanspektre af benzin ekciteret af 244 nm-linien, giver 
Toluen og Naphthalen bidrag der er sammenlignelige. Intensiteten af de respektive karakteristiske bånd 
ved 1004 cm-1 og 1381 cm-1 angiver de relative koncentrationer af de aromatiske stoffer Toluen og 
Naphthalen i benzinen. 

Kapitel 6 viser nogle andre eksempler på anvendelser af DUV-Ramanspektroskopien, herunder studiet af 
ulovlig tilsætning af det røde farvestof Sudan I til fødevarer. For dette farvestof kunne anvendelige 
Ramanspektre ikke opnås med grønt eller blåt laserlys på grund af fluorescens. Derimod kunne 
Ramanspektre af Sudan I opnås uden fluorescens ved brug af 244,0 nm excitation. Dette eksempel viser at 
DUV Ramanspektrometri således kan benyttes som påvisningsmetode for Sudan I som et ulovligt farvestof i 
mad. Fluorescens-fri DUV Raman-spektrometri blev yderligere anvendt til at detektere et andet ulovligt 
tilsætningsstof, Melamin, tilsat til prøver af fødevaren mælk. Det er blevet vist, at DUV i dette tilfælde 
udgør en mere følsom målemetode end traditionel Raman spektrometri og muliggør en direkte påvisning i 
flydende mælk.  I et andet forskningsfelt (inden for solid state science) er det tilsvarende blevet påvist at 
DUV Ramanspektroskopi kan bidrage til forståelsen af egenskaberne i Germanium og Siliconcarbide 
nanokrystaller, der anvendes som fotoniske materialer. Disse resultater gennemgås kun ret summarisk 
fordi resultaterne allerede er publiceret.  

Det er klart at man må forudse mange flere fremtidige anvendelser. 
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Chapter 1 Introduction to DUV Raman Spectroscopy  

1 
 

1    Introduction to DUV Raman spectroscopy 

1.1 Brief Introduction to Raman Spectroscopy 

The Raman scattering effect was discovered in 1928 by the Indian physicists Raman and Krishnan [1.1]. 

Raman scattering may be defined as “instantaneous” inelastic scattering of light (electromagnetic radiation). 

When a light quantum (a kind of particle in the light, called a photon) collides with a sample, the photon 

may be scattered, either elastically (called Rayleigh scattering) or inelastically (called Raman scattering). In 

the Raman process an amount of energy is exchanged with the sample as shown schematically in the 

quantum energy level diagram in Fig. 1.1. Accordingly, the outgoing photon has less or more energy than 

the incoming one (Stokes or anti-Stokes Raman processes). The energy is measured by the frequency   or 

the wavenumber ω, according to the relation   h  h c ω (here h is Planck’s constant and c is the speed 

of light). A Raman process corresponds to a (fundamental) transition among certain group vibrational states 

as described in the theory of quantum mechanics (quantum number v changing ± 1). For a peak (a Raman 

band) to occur in the Raman spectrum with a significant intensity, the molecular bond stretching or angle 

deformation vibration must cause a change in the so-called “polarizability” of the molecule (the 

polarizability is the ability of a molecule to become polar when subject to an electric field). The ensemble of 

light scattering bands constitutes the Raman spectrum. Most often only Stokes-shift Raman spectra are 

measured and shown; i.e. the scattered photons have lower frequency (energy) than the incident radiation.  

 

 Fig. 1.1: The relationships between infrared absorption, Rayleigh and Raman scattering; see 

the below text for details. The energy levels of the states are exemplified for a green laser and for a 

vibration occurring at a wavenumber of 2900 (cm-1).   ωo is the wavenumber of the exciting photons. 

During an infrared (IR) absorption process, a photon of IR radiation is absorbed. The molecular system most 

often undergoes a transition from the ground state (quantum number v = 0) to an excited state (v = 1). In 
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the case shown it may correspond to e.g. a bond stretching in a CH3 group and a fundamental wavenumber 

shift of ca. 2900 cm-1. In contrast to this IR absorption, during Rayleigh and Raman scattering typically an 

exciting photon of much higher energy (visible light) hits the molecular system and raises it to a virtual state, 

from where it "immediately" falls back. There are two possibilities, as illustrated in Fig. 1.1 with green Ar+ 

light of 514.5 nm wavelength, corresponding to a wavenumber of 19435 cm-1. In the so-called Stokes 

Raman scattering (not so likely), the system falls back to the v = 1 state (emitting a 16535 cm-1 photon). In 

Rayleigh scattering (more likely) it falls back to the v = 0 ground state (emitting light at 19435 cm-1), 

producing the so-called Rayleigh wing. If the system is starting from the v = 1 state (not so likely at room 

temperature because of the Boltzmann distribution), a similar Rayleigh transition can happen. But now also 

a so-called anti-Stokes Raman process is possible, producing photons at 22335 cm-1. Most Raman 

spectroscopy studies report data corresponding to Stokes Raman transitions. Samples or impurities therein 

having energy states near the ones labelled "virtual" in Fig. 1.1 (at e.g. 20000 cm-1) may absorb photons 

from the incident light and later re-emit the light as a broad intensive background. This is the phenomenon 

called fluorescence. 

Dramatic improvements in instrumentation (lasers, detectors, optics, computers, etc.) during recent years 

have raised the Raman spectroscopy technique to a level where it can be used for "species specific'' 

quantitative chemical analysis. Although the Raman technique many times is not as sensitive as e.g. 

infrared absorption, the Raman technique has the advantage that it can measure samples directly without 

touching or any sample preparation. Furthermore, by use of polarized light techniques, one can derive 

molecular information that cannot be obtained from infrared spectra [1.2]. 

Raman and Infrared techniques are closely interrelated in that they both depend on vibrational transitions 

in sample molecules. The spectral bands arise from characteristic “group” motions in the molecules present 

in the sample. One may say that the vibrational bands in the spectra give rise to a “fingerprint” of the 

molecules. As an example, bands occurring near 2950 cm-1 often arise from transitions for aliphatic C-H 

stretching vibrations (although sometimes perturbed by “Fermi-resonance” with overtones and other 

nonfundamental transitions). So-called empirical group frequency charts are available, specifying the 

"fingerprint" bands. These charts may be used to identify pure materials or to judge the presence of a 

particular component in a mixture [1.3], [1.4]. 

Although similar transitional energy ranges occur in IR and Raman spectroscopy, the selection rules that 

govern the intensities in Raman scattering and IR absorption spectra are not identical. Hence both types of 

spectra are of value when one wants to characterise a substance: A necessary requirement for a molecular 

motion (such as a vibration, rotation, rotation/ vibration, or lattice normal mode) to be measurable in IR 

spectra is that an oscillating dipole moment must be produced during the motion. In Raman the motion 

within the molecular system should produce a variation in the polarizability. Combinations, differences or 

overtones of these transitions may occur, but such transitions normally only occur with weak intensities. 

The selection rules of the transitions are described in great details in famous quantum mechanics and 

group theory texts [1.5], [1.6]. 
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1.2 Introduction to DUV Raman Spectroscopy and Instrumentation. 

Applications of Raman spectroscopy have been limited by the presence of fluorescence originating from the 

samples. One common way to eliminate the fluorescence is to use less-energetic near-IR lasers as the 

excitation source because the near-IR photon is too weak to excite most molecules into the first excited 

electronic state. Since the standard CCDs are not sensitive for near-IR detection, a common way to do near-

IR Raman spectroscopy is to detect the spectrum by the Fourier-transformation principle. Such FT-Raman 

instruments have a single energy sensing detector and involve a Michelson interferometer [1.7]. 

The fluorescence interference can also be addressed in the opposite way, i.e. by shifting the excitation 

source to the high-energetic deep ultraviolet (DUV) range. It was examined in a pioneering paper in 1984 by 

S. A. Asher’s group [1.8]. It was discovered that the fluorescence usually prevailed in Raman spectra, if 

excitation was done in the wavelength range from 300 to 700 nm, or longer. A cut-off wavelength was 

found to exist, at the short wavelength side in the UV region. Therefore the Raman signals and the 

fluorescence spectrum could be separated, resulting in the fluorescence interference being greatly 

diminished. The tick was to choose an excitation wavelength so short, that the excited Raman signals also 

occur at wavelengths shorter than the fluorescence spectrum.  

There are further advantages of using UV excitation. One of these is that the Raman signal intensity is much 

enhanced because the signals are proportional to the fourth power of the light frequency [1.9]. Another 

important advantage of using DUV light sources in Raman spectroscopy is the possibility of a significant 

improvement of the signal strengths by means of resonance enhancements. The resonance enhancement is 

realized in situations when the energy of the excitation photon energy is close to an electronic transition 

between two states. These situations are often realized when an absorption band exists in the absorption 

spectrum. In the situation of resonance enhancement, certain Raman band intensities can be increased 

dramatically. A resonance-enhanced signal can be several orders of magnitude more intense than the 

normal Raman signal [1.10], [1.11].      

Because of the above advantages DUV Raman spectroscopy has a great potential to expand the application 

field and value of the Raman scattering technology, especially in catalysis, biological sciences, art items, 

food and petroleum analyses. However, DUV Raman technology at present still has not been widely 

popularized. The major limitation to the widespread use of DUV Raman is the high cost of the 

instrumentation, especially the laser sources, as motioned by the Asher group in 2002 [1.12], and the DUV 

laser systems are inconvenient for the operator. Over the last ten years, the laser technology has evolved 

rapidly, especially with respect to the semiconductor lasers. It is worth to consider if one could adopt a 

semiconductor laser as the DUV Raman excitation source. Other types of lasers, such as fiber lasers and 

solid-state bulk lasers have also been evolved into compact, long lifetime, reliable and low power 

consuming lasers due to the developed semiconductor provided a good optical pumping for these lasers. 

Most semiconductor and solid-state based DUV lasers are still of high cost. DUV lasers for our present 

project seemed to be the gas DUV lasers: HeAg or NeCu hollow-cathode lasers (made by Photon Systems 

Inc. and sold by the Laser2000 company) and the Argon-ion gas laser.  
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In Chapter 2, the state-of-the-art laser technology to achieve DUV radiation is represented in detail, 

including some kind of lasers that have not been reported of use for DUV Raman application. We propose a 

highly compact setup to obtain useful DUV laser light. The suggested system is a diode laser combined with 

a nonlinear crystal waveguide, which could be an excitation source for a future portable type of DUV 

Raman instrument. We also provide an evaluation method for any suggested laser update in order to 

implement a new DUV laser in an existing laboratory. A newly developed laser designed software, Intarsia 

software package, was used to study the laser beam properties and laser cavity structure. 

Other parts of the instrumentation than the light source of the DUV Raman system have also evolved 

rapidly in recent decades. However, according to the recent literature, DUV-specifications promised by 

manufacturers should not always be trusted.  

An example that we have experienced personally is that the InVia Reflex spectrometer system was stated 

by the Renishaw manufacturer to have a ~1 cm-1 spectral resolution on their website, but actually it is, by 

our investigation, impossible to reach this number in the DUV range of their spectrometer. Another 

example that we have experienced was that a TriVista TR 557 A&S UV spectrometer failed to achieve 

Raman spectra by use of hollow-cathode lasers as the excitation light source. We are not sure why this 

could not be done, but surely it is essential to discuss (in Chapter 3) all optical elements such as gratings, 

mirrors, filters etc.  It is not an easy job to adopt suitable optical elements for the DUV Raman system. It is 

essential to optimize the working condition because the DUV Raman system to function must have very 

stringent conditions for the optical components. A major reason for this is that the output power levels of 

the DUV lasers are rather week. 
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2    Deep Ultraviolet (DUV) Light Sources 

 

The development of Raman spectroscopy has been benefiting much from laser technology. Since the first 

working laser was invented in 1960 [2.1], laser technology and Raman spectroscopy have been improving 

rapidly. Today, for Raman applications, various types of lasers are used. They can mainly be classified in 

three categories: gas lasers, solid-state lasers, and semiconductor lasers. However, not all wavelength 

regions of interest are directly accessible with these simple lasers, especially in the range of UV. Most 

common laser lines are located in the range of visible and infrared. Only few types of gas lasers have the 

direct DUV emission lines. Other ways of getting lasers emitting the DUV lines are obtained by means of 

frequency conversions that are implemented by optical nonlinear processes, such as Second Harmonic 

Generation (SHG), Sum Frequency Generation (SFG), Third Harmonic Generation, 4th Harmonic Generation 

and even 5th Harmonic Generation.  

Table 2.1 shows the direct emission lines for some typical lasers. With regard to direct DUV laser sources, 

there are two types of gas lasers, Excimer lasers and Hollow Cathode ion lasers. Excimer lasers are based on 

noble gas halide (eximers, like KrF) molecules that may exhibit several DUV lines. However, Excimer lasers 

do not suit for Raman spectroscopy application because of the poor coherence of the lasing process, i.e. 

poor laser beam quality and broad line-width. Hollow cathode ion lasers have been applied for Raman 

spectroscopy [2.8], [2.9]. There are two typical types of hollow cathode ion lasers that have been 

commercialized, HeAg and NeCu, emitting at 224.3 nm and 248 nm, respectively. Hollow cathode lasers are 

pulsed lasers, and their average power are emitting relatively weekly (< 1mW). They can probably just be 

adopted for particular setups. 

Other more useful kind of lasers for DUV generation are the frequency converted DUV laser sources. They 

are based on optical nonlinear processes and are implemented by propagating light through a nonlinear 

crystal. A requirement for the nonlinear effect to function is that they demand that the fundamental 

pumping laser has certain qualities such as a high power density. There are four main kinds of methods to 

achieve a high power density pumping laser: the use of pulsed, external power-enhancement cavity [2.10], 

intra-cavity [2.11] and nonlinear crystal waveguide [2.12] techniques. Pulsed lasers are normally implemented 

by a Q-switch or mode-locking technology [2.13]. External power-enhancement cavity and intra-cavity are 

suitable for Continuous-Wave (CW) laser frequency conversion. Nonlinear crystal waveguide is a newly 

rising technology, suitable for both pulsed and CW lasers; combined with a fundamental diode laser, it is 

the most convenient way to achieve a compact DUV laser device. 

As mentioned above, there are many combinations and various methods to obtain fundamental frequency 

conversion. Therefore, property of each of the various DUV lasers should be considered for choosing the 

most suitable and cheapest DUV laser source. In the following section, the discussion will be mainly around 

three properties, i.e. power level, laser line width and beam quality. 

Some DUV laser light may be achieved just by upgrading already existing lasers in our or other laboratories 

with frequency doubling. Frequency doubling attachments can be achieved commercially from e.g. Spectra 

Physics, Inc.  Such a device is actually an external power-enhancement cavity equipped with a second 

harmonics generation (SHG) crystal. It normally requires – to obtain a useful amount of intensity of DUV 
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light - that the fundamental laser operates in the single-frequency longitudinal and TEM00 mode [2.13]. Also 

the power level of the fundamental laser should exceed a certain level below which no useful amount of 

DUV intensity is emitted. Some of above mentioned DUV lasers are still under development, such as the 

techniques of nonlinear crystal waveguiding. In order to examine if we should choose to buy a suitable new 

commercial DUV laser, or try to modify/upgrade an already existing argon-laser in our laboratory, most 

possible DUV laser sources and the responding optical properties will be discussed in the following section. 

The discussion will also give a view of the useful future DUV laser sources. 

As an interesting note, we mention that Light Emitting Diodes (LED) emitting in the DUV range are already 

commercial available (e.g. from Sensor Electronic Technology, Inc.), and a wavelength as deep as 222 nm 

has been reported [2.14]. These light sources may be used in a similar way like Deuterium Lamps, but the LED 

is a low coherent light source. Also because of the small emission area, it is possible to use such a LED DUV 

light source for Raman spectroscopy applications when the monochromator is equipped with a narrow line 

width filter.  

Another interesting way to achieve the DUV laser light is by use of a so-called Raman shifter. The mechanics 

of Raman shifting is based on Simulated Raman Scattering. Stimulated Raman Scattering occurs in most of 

substances when a high intensity laser beam passes through the medium [2.56]. As the excitation medium, a 

tube with Hydrogen gas at a high pressure (> 10 atm) is often adopted (a so-called H2 shifter) because of 

the large shifting distance, 4155 cm-1, that Hydrogen can give and because of the low self-focusing effect 

which affects directly the beam quality and the conversion efficiency [2.56]. Since the power of the 

stimulated Stokes (or anti-Stokes) wave is exponentially proportional to the incident power density and the 

propagation distance during steady-state operation [2.57], pulsed lasers with high peak power [2.48], [2.58] are 

normally required as an excitation laser for a single-pass H2 shifter.      

Table 2.1: Typical emission lines from lasers and other light sources. [2.2]-[2.7]. 

 Light source types Emission wavelength (nm) 

 
 
 
Gas lasers 

Helium neon (He-Ne) laser 632.8 

Argon-ion laser 351.1 , 363.8, 454.6, 457.9, 465.8, 476.5, 488.0, 
496.5, 501.7, 514.5, 528.7, 1092.3  

Nitrogen laser 337.1 

Hollow Cathode ion lasers  (HeAg) 224.3,  (NeCu) 248  

Excimer lasers (F2) 157, (ArF) 193, (KrCl) 222, (KrF) 248, (XeCl) 
308, (XeF) 351 

Solid-state 
lasers 

Nd:YVO4 lasers 1064, 914 

Nd:YAG lasers 1064, 946 

Nd:YLF lasers 1053, 1047 

Ce:LiSAF lasers 280-316 

Ti:sapphire lasers 650 - 1100 

Yb:YAG laser 1020-1050 

Semiconductor 
lasers 

Diode lasers 336-2680 

LED AlGaN LED  222-282 
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2.1 General discussion of lasers 

2.1.1 Laser line widths and longitudinal modes 

The term “line width” of the exciting light source implicates the Full width at half maximum (FWHM) of the 

laser output spectrum. It distinguishes the single-longitudinal mode (also called the single frequency) from 

the multi-longitudinal mode. In order to understand the laser output spectrum, we have to start with the 

basic principles of the laser.  

The simplest structure of a laser is shown as Fig. 2.1 (A). In general a laser consists of a gain medium inside 

a highly reflective optical cavity (an optical resonator). The gain medium is a material with properties that 

allow it to amplify light by stimulated emission. The cavity consists of two mirrors arranged such that light 

bounces back and forth, each time passing through the gain medium. Typically one of the two mirrors is 

partially transparent. The output laser beam is emitted through this mirror. In an optical cavity, only the 

frequencies of light satisfying the resonance condition [2.15] can be oscillating. As shown in Fig. 2.1 (B), these 

discrete frequencies are so-called longitudinal modes of laser resonance. The gain medium has a gain band 

or response function.  It turns out that the profile of the laser output spectrum has a shape as shown in Fig. 

2.1 (C). Normally, there are several longitudinal modes included in the laser output spectrum, so it is a 

multi-longitudinal mode laser. The laser output spectrum must be considered carefully, depending on the 

resolution if not single mode. The line width of a multi-longitudinal mode laser must be defined by the 

FWHM of the envelope curve of the laser output spectrum.  Most lasers are multi-longitudinal mode lasers, 

such as Ar-ion lasers, with mode separation of about 0.33 cm-1 and an overall line width containing about 

60 longitudinal modes, analogously to what was shown in Fig. 2.1 (D).  

Various laser media have different laser gain bandwidths, therefore the FWHMs of laser output spectra are 

different. It should be noted that the FWHM of the laser output spectrum is not same as the FWHM of laser 

gain band because there are many factors that have not been considered in the schematic diagram in Fig. 

2.1, such as optical losses, modes competitions and so on.   

Some kinds of laser media have very broad laser gain bandwidths. Consequently, the output wavelength of 

the laser becomes widely tuneable, such as for the Ti: Sapphire laser and the dye laser. Thus Ti: Sapphire 

lasers allow tuning over hundreds of nanometers, from ~650 nm to ~1100 nm. Most solid state diode lasers 

can be tuned over a few nanometers just by changing the temperature.  

For high resolution Raman applications, a narrow line width or a single-longitudinal mode laser is required. 

It is so because the laser output spectrum has a convolution effect on the Raman spectrum measurements.  

In other words, the Raman band can be broadened by the line width of the laser source. Such effects must 

therefore be taken into consideration to improve the spectral resolution. Use of an external enhancement 

SHG cavity provides a method to achieve DUV laser light (200 nm – 300 nm) from a suitable visible light 

source (400 nm – 600 nm).  It requires however that the fundamental wave has enough narrow line width 

to oscillate and enhance the fundamental wave in the external-cavity. But also the solution features should 

be considered. This will be discussed in the following section. 
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In order to achieve the single longitudinal mode operation, one must consider implementing different 

methods depending on the various lasers.  For Argon-ion lasers the common method is to insert an etalon 

in to the laser cavity. The principle of these methods can be considered to induce an optical loss factor to 

limit the laser oscillation in the different longitudinal modes. An Etalon is actually a small optical resonator 

that provides a comb-like loss in the laser cavity to select one particular longitudinal mode, as shown in Fig. 

2.1 (F). For diode lasers, the single mode operation can be implemented by use of so called Distributed-

feedback (DFB) diode lasers or Grating-feedback External-cavity diode lasers. As shown in Fig. 2.1 (E), the 

grating provides a loss window to select a particular longitudinal mode. 

For deuterium lamps and DUV LEDs the line widths are depending on the spectral resolution (line width) of 

the output monochromators which are adapted as an integral part of the light source [2.16].  

 

 Fig. 2.1: (A) Simplest structure of laser; (B) Laser cavity longitudinal mode structure. The 

frequency separation of longitudinal modes depends on the length L of the laser cavity by c/L, where c is 
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the light speed.  (C) The laser active medium has a certain gain band structure. (D) The laser output 

spectrum mainly depends on the laser gain band of the active medium and the optical loss factor in the 

laser cavity.  (E) The induced loss structure of the grating results in a frequency selection window. (F) The 

induced loss of an etalon has a comb-like structure. 

 

2.1.2 Laser beam quality and Transverse modes  

In addition to the longitudinal modes lasing structure, lasers also exhibit transverse laser modes that 

determine the intensity distributions in the cross-section of the beam and the wave front of the beam. The 

laser beams are normally generated from a laser cavity or a waveguide (e.g. a fiber). Light may be 

considered as an electromagnetic field. The physical meaning of the existence of transverse modes is that 

the cavity or the waveguide can allow a series of laser beams - oscillating in the cavity or propagating in the 

waveguide - with a stable intensity (the cross-section) and phase (wave front) distribution. With the energy 

pump activated, such laser beams will be amplified and emitted. In mathematical terms, the modes refer 

the specific solutions of the wave equation that satisfy the appropriate boundary conditions of the cavity or 

the waveguide.  

In a laser with cylindrical cavity symmetry, such as most gas lasers, the transverse mode patterns are 

described by a combination of a Gaussian profile with a Laguerre polynomial [2.13]. The modes are denoted 

TEMpl (Transverse ElectroMagnetic mode) where p and l are integers labelling the radial and angular mode 

orders, respectively. Cylindrical transverse mode patterns TEMpl are shown in Fig. 2.2 (a). With p = l = 0, the 

TEM00 mode is the lowest order, or fundamental transverse mode of the laser resonator and has the same 

form as a Gaussian beam.  

In a laser with rectangular cavity symmetry, such as most of solid-state lasers, the transverse mode 

patterns are described by a combination of a Gaussian beam profile with one or more Hermite polynomials 
[2.13]. These modes are designated TEMmn with m and n being the horizontal and vertical orders of the 

pattern. Rectangular transverse mode patterns TEMmn are shown in Fig. 2.2 (b). With m = n = 0, one has the 

TEM00 mode of the lowest order that corresponds to exactly the same fundamental mode as in the 

cylindrical cavity geometry. The single mode operation normally is implemented by inserting a pinhole into 

the cavity or reducing the cross-section area of energy pumping, because the high order modes have a 

bigger size of the beam. 

For optical waveguide laser systems, one distinguishes multi-mode waveguides from single-mode 

waveguides. A single-mode waveguide only allows the fundamental mode to propagate in the appropriate 

range of wavelengths. The number of possible modes depends of the cross-section refractive index 

distribution and the cross-section dimension of the core. For a single-mode waveguide the cross-section 

dimension of the core can be from a few micrometers to decades of micrometers. The transverse modes of 

a single-mode waveguide, for example of a step-index fiber, contain only the lowest-order mode (LP01, 

Linear Polarization modes). The intensity profile of the LP01 mode is similar to that of a Gaussian beam, and 

it may reasonably well be approximated as the TEM00 mode [2.17].    
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 Fig. 2.2: (a) Cylindrical transverse mode patterns TEMpl.   (b)  Rectangular transverse mode 
patterns TEMmn. 

The laser Beam Quality factor (M2, also called the laser beam propagation factor) is a parameter that 

indicates how close a laser beam is to being running in the TEM00 single mode, as well as an indicator to 

show how small a laser can be focused. For the best beam quality, M2 = 1, it means that such a laser beam 

contains only the TEM00 mode, also called a Gaussian beam. The closer to 1 the value of M2 is, the better is 

the beam quality. For a practical laser beam, the beam quality factor, M2, must be bigger than 1, because a 

practical laser beam always contains more or less of the high order modes. Also it must be affected by 

aberrations of the optical components, diffractions of aperture, spatial wall-off and so on. The 

phenomenon of spatial wall-off appears at the frequency conversion process as well as SHG, and this 

phenomenon has a dominating effect on the beam quality of frequency converted lasers.  

Sometimes, laser beams are not described by the value of M2, but instead by the beam divergence angle 

and the beam diameter. Therefore, in order to recognize the description of a laser beam, it is necessary to 

know the propagating behavior of a Gaussian beam and the definition of M2.  

A Gaussian beam propagating in free space retains its Gaussian profile; it remains Gaussian. For a 

monochromatic Gaussian beam, propagating in the z direction with the wavelength λ, the transverse profile 

of the optical intensity of the beam expressed by means of the power P can be described as [2.13]: 

 𝐼 𝑟, 𝑧 =
2𝑃

𝜋𝑤 𝑧 2 𝑒𝑥𝑝  −
2𝑟2

𝑤 𝑧 2                                                                             ------ (2.1) 

 𝑤 𝑧 = 𝑤0 1 +  
𝑧𝜆

𝜋𝑤0
2 

2
                                                                                      ------ (2.2) 

Here the beam radius w(z) is the distance from the beam axis to a point where the intensity has dropped to 

1/e2 (≈ 13.5%) of the maximum value, w0 is the radius of the laser beam waist (as shown in Fig. 2.3). As we 

can see from Equation (2.1), when the wavelength λ is given, the beam radius w(z) along the propagating 

direction z are totally defined by the value of the laser beam waist w0. In Fig. 2.3, the blue curve shows the 

variation of the beam radius w(z) along the beam propagating direction z.  

The divergence half-angle Ѳ can be found by letting 𝑧 → ∞: 
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 𝜃 = lim𝑧→∞
𝑤 𝑧 

𝑧
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𝑤0 1+ 
𝑧𝜆

𝜋𝑤0
2 

2

𝑧
=

𝑤0  
𝑧𝜆

𝜋𝑤0
2 

2

𝑧
=

𝜆

𝜋𝑤0
                  ------ (2.3) 

Therefore, for an ideal Gaussian beam 

 

 
𝜃𝜋𝑤0

𝜆
= 1                                                                                                              ------ (2.4) 

For a practical Gaussian beam the value of M2 can be found by measuring the divergence half-angle and the 

beam radius. They are denoted as Ѳ’ and wo’ respectively (dashes are added because of the nonideality). 

Then the value of M2 is given by 

  

 𝑀2 =
𝜃 ′ 𝜋𝑤0

′

𝜆
                                                                                                           ------ (2.5) 

However, Equation (2.5) is not the definition description of M2 because the practical value of Ѳ’ and wo’ can 

only be measured at a place where the intensity has dropped to 1/e2 (≈ 13.5%) of the maximum value 

which is only a precise measuring method for an ideal Gaussian beam. Therefore, for an arbitrary beam (a 

practical more or less Gaussian beam) we need a well defined definition of the beam radius. Such a 

definition is the so called second moment width [2.18].   

Since the measurement of a second moment width is sensitive for background subtraction on the detector, 

it requires a specific standard for the measuring method, and such a standard is the ISO standard 11146 
[2.18].  

Here, we are not going to describe the ISO standard 11146 in detail. However, Equation (2.5) may still 

provide a rough method to estimate the beam quality parameter M2. 

 

 Fig. 2.3: The red curve shows the variation of the beam radius w(z) along the beam 

propagating direction z for an example beam with waist radius w0  = 80 μm and λ = 1064 nm. The half-angle 

divergence Ѳ of a Gaussian laser beam is defined via the asymptotic variation of the beam radius (red 

curves) along the beam direction.  
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2.1.3 Generating UV light by Photon Mixing Frequency Conversion 

Instead of directly generating the UV light by a direct physical process, as mentioned previously one may 

generate UV photons from other photons. Such a process may be called Frequency conversion. The 

conversion is implemented by one or more nonlinear optical processes in a nonlinear medium, normally an 

optical nonlinear crystal.  

Light can be regarded as electromagnetic waves. When an electric field E (a vector) is applied to a dielectric 

medium, a separation of bound charges is induced, resulting in a collection of induced dipole moments. The 

dipole moment is the product of the net separated charge times the distance in units of Debye. The electric 

polarization 𝓟 (a vector) is defined as the net average dipole moment per unit volume. The relation 

between 𝓟 and E is approximately linear for small 𝓟. It becomes nonlinear when E acquires a value 

comparable with the interatomic electric fields (typically on the order of 105 to 108 V/m). Under these 

circumstances, it is customary to write 𝓟 in the form: 

 𝓟 = 𝓟𝐿 +𝓟𝑁𝐿                                                                                                ------ (2.6) 

where 𝓟𝐿  is the linear polarization and 𝓟𝑁𝐿
 
is the nonlinear polarization. They are given by 

 𝓟𝐿 = ε0𝜒
 1 𝑬                                                                                                  ------ (2.7) 

 𝓟𝑁𝐿 = 𝜀0 𝜒
 2 𝑬𝑬+ 𝜒 3 𝑬𝑬𝑬+∙∙∙∙∙∙                                                 ------ (2.8) 

where ε0
 
is the vacuum permittivity of free space and χ(1) is the linear response tensor. χ(2) and χ(3) are the 

second and third order nonlinear susceptibility response tensors. Since 𝑬𝑬 and 𝑬𝑬𝑬 can be considered as 

six and ten dimensional vectors respectively, χ(1), χ(2) and χ(3) are 3x3, 3x6 and 3x10 tensors respectively. χ(2) 

governs the processes of Second Harmonic Generation (SHG) and Sum frequency generation (SFG). For 

Frequency Tripling, in principle, this can be achieved with a χ(3) nonlinearity for direct third-harmonic 

generation [2.19], [2.20], but this is difficult due to the small size of the χ(3) nonlinearity of optical media and 

because of so called phase-matching constraints. Therefore, frequency tripling (if wanted) is usually 

realized as a cascaded process, beginning with frequency doubling (FD) of an input beam and subsequent 

sum frequency generation of both waves, with both processes being based on nonlinear crystal materials 

with a χ(2) nonlinearity. For Frequency Quadrupling, this can be accomplished by two sequential frequency 

doublings or a frequency tripling followed by a SFG with the fundamental wave. Similarly, Frequency 

Quintupling is accomplished by frequency quadrupling followed by a SFG process with the fundamental 

wave. Therefore, Frequency Quadrupling and Frequency Quintupling are also based on the χ(2) nonlinearity. 

For the second order χ(2) nonlinearity, the optical parametric processes are involving three interacting 

beams, two incoming and one outgoing ones. SHG is the degenerate case of SFG where the two 

fundamental waves are having the same frequency.  

In all these generation processes, both energy and momentum of the involved photons need to be 

conserved. The energy conservation condition can be written as:  

 𝜈1 + 𝜈2 = 𝜈3     (For SFG process) 
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 2𝜈1 = 𝜈3            (For SHG process) 

where ν1, ν2 and ν3 are frequencies of the two fundamental waves and the converted wave, respectively. 

Momentum conservation is achieved by satisfying the Phase Matching [2.34] condition: 

 Δ𝑘 = 𝑘3 − 𝑘2 − 𝑘1 = 0  (For the SFG process) 

 Δ𝑘 = 𝑘3 − 2𝑘1 = 0        (For the SHG process) 

Where k1, k2 and k3 are the wave vectors, respectively. A wave vector is a vector pointing in the propagation 

direction and with a magnitude of 1/λ. 

In the following we will focus on the case of frequency conversion by the process of SHG. The power 

conversion between the fundamental wave photons and the frequency doubled wave, and the phase 

matching condition are the two topics that we are concerned with.   

 

1.1.3.1 The SHG conversion efficiency τSHG and the Frequency doubling efficiency τFD 

By assuming that the starting laser light is traveling as plane waves in the z direction in a suitable nonlinear 

crystal with the property of phase-matching and with negligible power loss. The laser power conversion via 

SHG can then be described as below [2.54]: 

 
𝑃1 𝑧 

𝑃1 0 
= 𝑠𝑒𝑐2  𝛾 

𝑃1 0 

𝐴
𝑧                                                                         ------ (2.9) 

 
𝑃3 𝑧 

𝑃1 0 
= 𝑡𝑎𝑛2  𝛾 

𝑃1 0 

𝐴
𝑧                                                                         ------ (2.10) 

 𝛾 =  
2𝜔1

2𝑑𝑒𝑓𝑓
2

𝜀0𝑐
3𝑛1

3                                                                                                ------ (2.11) 

Here  

P1(0) is the input power of fundamental wave,  

P1(z) is the attenuated power of incoming fundamental wave along the propagating direction z.  

P3(z) is the power of frequency doubled wave outgoing along the propagating direction z (the 

number 3 is referring to the third photon in the SHG generation process). Here z actually is the length 

of the nonlinear crystal.  

sech2 x and tanh2 x are the usual  squared hyperbolic secant  and tangent functions of x.  

A is the cross-section area of the laser beam.  

𝜸 is a constant that depends on the specific properties of the nonlinear crystal.  

ω1 is the angular frequency of the fundamental wave. 

ε0 is the permittivity of free space. 

C is the light speed of free space. 
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n1 is the refractive index of the nonlinear crystal. 

deff is the so called d-coefficients that refers the second order response tensor. 

According to Equation (2.10), there are four parameters that affect the efficiency of the SHG: The power of 

the fundamental wave P1(0), the property of the nonlinear crystal 𝛾, the size of the beam cross section A 

and the length of the crystal z. Therefore, various methods can respectively be used to increase the 

efficiency. 

1. To increase the power of fundamental wave, there are several methods that could be used: 

 Put the nonlinear crystal inside the laser cavity, so called intra-cavity SHG 

 Attach an enhancement cavity to increase the power, so called external-cavity SHG 

 Use a pulsed laser, to temporary increase the instantaneous power extremely 

2. Choose a high d-coefficient nonlinear crystal to obtain a high value of 𝛾. 

3. A and z are two contradictory parameters for a laser beam because a smaller beam waist create a 

bigger beam divergent angle, as shown in Fig. 2.3 In order to find the optimum beam size, the 

Boyd-Kleinman factor should be considered [2.21]. A new rising technology, the so called poled 

nonlinear crystal waveguide SHG device methodology, can avoid this problem.  Therefore >99% 

power conversion has been achieved on a low power level (<1 W) [2.22]. This technology will be 

discussed in a following section (2.1.3.5). 

On the condition of low conversion efficiency, the approximation tanh(x) ≈ x can be used to simplify the 

Equation (2.10).  

 P3 𝑧 =
𝛾2𝑧2

𝐴
𝑃1

2 0                                                                                                    ------ (2.12) 

Here it is clear that the power of the frequency doubled beam depends on the square of the power of the 

fundamental wave. It is usual to define a SHG conversion efficiency τSHG as below: 

 𝜏𝑆𝐻𝐺 =
P3 z 

P1 0 
=

𝛾2𝑧2

𝐴
𝑃1 0                                                                                      ------ (2.13) 

Therefore the SHG conversion efficiency τSHG is linearly depending on P1(0). It should be noted that the SHG 

conversion efficiency τSHG and the Frequency Doubling (FD) efficiency τFD should be distinct. The definition 

of the FD efficiency τFD for a frequency doubler device is the input power of the fundamental laser P0(0)  

divided by the output power of the frequency doubled laser.  

  𝜏𝐹𝐷 =
P3 z 

P0 0 
                                                                                                                ------ (2.14) 

For the case of the external enhancement cavity doubling, P0(0) means the input power of the fundamental 

laser outside the enhancement cavity, but P1(0) means the enhanced power inside the enhancement cavity. 

For the case of pulsed laser frequency doubling, P0(0) means the average power of the fundamental laser, 

and P1(0) means the peak power of fundamental laser.  
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Concerning the enhancement rate er for the external enhancement cavity doubling,  

 𝑒𝑟 =
𝑃1 0 

𝑃0
                                                                                                                    ------ (2.15) 

the relation between τSHG and τFD is 

 𝜏𝐹𝐷 = 𝑒𝑟 ∙ 𝜏𝑆𝐻𝐺                                                                                                          ------ (2.16) 

 

2.1.3.2 Phase Matching 

Due to the chromatic dispersion in most optical elements, the fundamental wave and the frequency 

doubled wave may have different velocities of propagation in the nonlinear applied crystal. Therefore the 

SHG from the different parts of the crystal can cancel each other, as shown in Fig. 2.4. However, it is 

possible to find a propagation direction where these two waves (the fundamental and the doubled wave) 

have the same velocity independent of the anisotropism of the nonlinear crystal. Under such condition the 

so-called Phase matching, the SHG can grow up quite substantially, see Fig. 2.4 (b). The usual technique for 

achieving phase matching in nonlinear crystals is to use birefringent phase matching [2.34], where one 

exploits the crystal property of birefringence to cancel the phase mismatch. This birefringent phase 

matching technique comes mainly in two variations: 

 Type I phase matching meaning that, e.g. in sum frequency generation, the two fundamental 

beams have the same polarization direction, perpendicular to that of the sum frequency wave. 

 

 Type II phase matching, in which the two fundamental beams have perpendicular polarization 

(Type II type phase matching can also be adopted for un-polarized fundamental laser. In such a case, 

the two perpendicular polarization directions refer to the projections of the fundamental 

polarization).  

For the intra-cavity frequency doubling method of SHG, therefore type I and type II phase-matched 

frequency doublings are suitable for respectively polarized emission and unpolarized emission [2.23].  

For a laser beam propagating in an isotropic medium, the transverse intensity distribution propagates along 

the beam axis as defined by the k wave vector of the medium. In anisotropic (and thus perhaps birefringent) 

crystals, this is not necessarily the case. It is possible for the intensity distribution and polarization to drift 

away from the direction defined by the k wave vector, as illustrated in Fig. 2.5.  Here the gray lines indicate 

wavefronts and the blue color marks the region with significant optical intensity. This phenomenon, called 

spatial walk-off, could separate and displace the SHG created laser beam of to a different propagating 

angle, thereby decreasing the power conversion efficiency and the SHG laser beam quality. There are two 

phase matching techniques that can be used to avoid this problem: 

 Noncritical phase matching (also called temperature phase matching or 90° phase matching). Here, 

all polarization directions are along the crystal axes. The interacting beams are aligned such that 

http://www.rp-photonics.com/noncritical_phase_matching.html
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they propagate along some direction in axis of the birefringent nonlinear crystal. The phase 

mismatch is minimized by adjusting the crystal temperature until the phase velocities of the 

interacting beams become equal. The attribute “noncritical” comes from the fact that this 

technique is relatively insensitive to slight misalignments of the beams. Another important 

advantage of this method is that the phenomenon of spatial walk-off is avoided. Therefore, the 

conversion efficiency can often be very high with noncritical phase matching method, and a high 

beam quality of SHG can be achieved. Typically, Lithium TriBorate (LBO) crystals are applied for this 

technique to achieve SHG from 1064 nm neodymium-based lasers [2.24]. 

 

 Quasi Phase Matching (QPM) is a technique for achieving phase matching by use of a nonlinear 

crystal material with spatially modulated nonlinear optical properties. The idea is essentially to 

allow for a phase mismatch over some propagation distance, but to reverse (or disrupt) the 

nonlinear interaction at positions where otherwise an interaction would take place with a wrong 

direction of conversion.  

In Fig. 2.6 it is illustrated with green arrows how the complex amplitude contributions from 

different parts in the nonlinear frequency doubling crystal add to form the harmonic wave.  

The most popular technique for making a quasi-phase-matched crystal is to use periodic poling of a 

ferroelectric nonlinear crystal material such as lithium niobate (LiNbO3), lithium tantalate (LiTaO3) 

or potassium titanyl phosphate (KTP, KTiOPO4). The technique is also called ferroelectric domain 

engineering. A strong electric field is applied to the crystal for some time, using microstructured 

finger-like electrodes, so that the crystalline domain orientation and thus the sign of the nonlinear 

coefficient are permanently reversed, but only below the electrode fingers. The electrode size (the 

periodicity of the electrode pattern) determines the wavelengths for which certain nonlinear 

processes can be quasi-phase-matched. It can work with a very wide range of nonlinear 

interactions, even in crystals which have e.g. too weak a birefringence for birefringent phase 

matching, and without spatial walk-off. 

 

 Fig. 2.4: The sketch of growth of second harmonic power in a crystal. (a) illustrates with 

arrows how the complex amplitude contributions from different parts in the nonlinear frequency doubling 

crystal add to form the harmonic wave. Without phase matching, the amplitude contributions from 

different parts of the crystal will cancel each other (blue arrows). With phase matching, the amplitude 

contributions will superimpose on each other, resulting in the second-harmonic wave growing up in 

intensity (green arrows). (b) Growth of second harmonic power in a crystal along the propagation direction, 

assuming a constant pumping intensity. Solid greed curve: the phase-matched case, with the power 
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growing in proportion to the square of the propagation distance; Dashed blue curve: the non phase-

matched case, with the SHG power oscillating between zero and a small value.  

 

 

 Fig. 2.5: Spatial walk-off: The intensity distribution of a beam in an anisotropic crystal 

emitting SHG radiation propagating in a direction which is slightly different to that of the wave vector.  

 

 

 Fig. 2.6: With quasi-phase matching, each section of the crystal is not in prefect phase-

matching. Instead, the amplitude contributions from different sections cancel each other as dark blue 

arrows show. Therefore the second-harmonic amplification wave cannot grow up. (b) Growth of the second 

harmonic power in a crystal along the propagation of direction, assuming a constant pumping intensity in 

the case of quasi-phase matching.  
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2.1.3.3    Selecting Nonlinear Crystals for DUV SHG 

Selecting suitable nonlinear crystals for the SHG at certain wavelengths and calculating the phase matching 

angles is a complex task. Fortunately, there is nowadays software that can be used as aiding tools. SNLO 

(Select Non-Linear Optics) is such public domain software developed at Sandia National Laboratories in USA 

for selecting a nonlinear crystal and in modeling the nonlinear frequency conversion processes in those 

crystals. Over sixty crystals are contained in the database of the SNLO program [w2-6].  

The first step to select a nonlinear crystal for DUV generation is to investigate the transparency in the range 

of 200 nm - 300 nm and 400 nm - 600 nm, because most of crystals are not DUV transparent. There are 

only few crystals that satisfy the transparency condition, such as BBO (β-barium borate, β-BaB2O4), LBO 

(lithium triborate, LiB3O5,), CLBO (Cesium Lithium Borate, CsLiB6O10), Na2CsBe6B5O15 
[2.25] and KBe2BO3F2 

[2.26]. 

Secondly, the d-coefficients and the angle of the spatial wall-off should be considered. We choose two 

crystals, BBO and CLBO, as the investigation targets, because these two crystals have distinct advantages 

over the others, namely excellent transparency in the range of blue and shorter wavelength light; 

otherwise they cannot be suitable for intra-cavity frequency doubling.  

Fig. 2.7 shows the curves of transparency versus wavelength that are obtained as results from SNLO 

software. Other properties of these two crystals are shown in Table 2.2 read from the SNLO program. The 

main disadvantage of BBO is the spatial walk-off angle that is bigger than for CLBO’s. The decisive 

disadvantage of CLBO is the SHG phase matching cut off wavelength that is 471 nm. Therefore the CLBO 

crystal cannot be used to achieve DUV light deeper than 235.5 nm (half of 471 nm).  

         Table 2.2: Comparison of the properties of BBO and CLBO. 

Nonlinear 
crystals 

Cut off 
SHG 

d-coefficients @ 
244 nm 

Spatial walk-off 
angle @ 244 nm 

Optical damage 
threshold @ 1064 nm 

BBO 411 nm 1.56  pm/V 83.11 mrad 1-2 GW/cm2 

CLBO 471 nm 0.895 pm/V 19.76 mrad 25 GW/cm2 
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 Fig. 2.7:  Transparency curves of crystals of 1 cm length:  (a) BBO i.e. β-barium borate, β-
BaB2O4. (b) CLBO i.e. cesium lithium borate, CsLiB6O10. 

 

2.1.3.4   Frequency doubler 

There are some laser manufacturers that also provide frequency doubling attachments, such as Spectra-

Physics, Inc. (the WaveTrain attachment [w2-1]), Coherent, Inc. (the MBD-200 unit [w2-2]) and TOPTICA 

Photonics, AG (the SHG pro module [w2-3]).  

These frequency doublers are SHG devices equipped with an enhancement cavity and a nonlinear crystal. 

The schematics of a typical unit are shown in Fig. 2.8. The enhancement cavity is an optical cavity which is 

used for resonant enhancement of the optical power: if the incident light is resonant with the cavity, i.e. 

the frequency of laser is equal to one of mode of the cavity (the so-called resonant condition), then the 

intra-cavity power can be far above the incident power, particularly for a cavity with high finesse [2.35]. 

Finesse depends on the reflectivity of the cavity mirrors, meaning that a high finesse cavity can trap a 

fundamental photon for longer time and therefore a higher power can be obtained inside the cavity. The 

“active piezo control” is used to adjust the optical length of cavity in order to make the frequency of the 

incoming laser satisfying the resonant condition. When an appropriate nonlinear crystal is placed inside the 

enhancement cavity, a high SHG conversion efficiency can be achieved.  However, there are some other 

quite demanding conditions for the fundamental laser to make a well working system. 
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1. The linewidth of the fundamental laser should be narrow enough. Normally, a single-longitudinal 

mode is required. It is because the enhancement cavity has its own longitudinal mode structure. 

When the fundamental laser is operated in a multi-longitudinal mode, only that particular mode 

may reach the resonance condition. It is impossible to make all the longitudinal mode frequencies 

of laser satisfy the resonance condition unless the longitudinal modes of the laser and the 

attachment are of the same spacing, i.e. the optical length of the laser cavity should be equal to the 

optical length of the enhancement cavity.   

2. The laser beam quality should be as good as possible. In order to couple the laser beam into the 

enhancement cavity, the laser transverse mode must be matching the transverse mode of the 

cavity. It can be achieved by adjusting the mode-coupling lens as shown in Fig. 2.8 (B). The high 

order transverse modes are difficult to couple into the enhancement cavity.  Except for the TEM00 

mode, other modes of the laser beam will be lost in the enhancement cavity. 

3. The power of the fundamental laser should be as high as possible. As mentioned above, the output 

power of SHG depends on the quadratic power of the input intensity power. Typically, 1 Watt of 

fundamental wave input is required to achieve about 10% power conversion for the frequency 

doubled wave.  

Concerning the types of enhancement attachments, the MBD-200 and SHG pro units are using the 

traditional (so-called) bow-tie cavity for the SHG enhancement, as shown in the Fig. 2.8 (B). The mirrors M1, 

M2, M3 and M4 form a cavity looking like a bow-tie. M2 is driven by an active piezo control system to 

ensure that the optical length of cavity saturates the resonance condition. Because the wavelength of the 

incoming fundamental laser is always shifting more or less and the optical length of enhancement cavity 

can also be changing due to thermal bending, the presence of the active piezo control system is necessary 

to maintain a stable resonance condition. Such an active piezo control was normally implemented by a 

Pound–Drever–Hall technique [2.37]. The disadvantage of such a design is that the pointing of the output 

beam is unstable. Since M3 is a concave mirror, a small movement of M2 will cause a small angle change of 

the output beam. A small angle can cause a signification displacement of laser beam position when the 

laser beam propagates over a certain distance. In contrast to this the WaveTrain SHG unit utilizes a 

DeltaConcept ring cavity [w2-1] which allows the cavity length to be adjusted with no effect what so ever on 

the output beam position. The DeltaConcept ring cavity is constructed by M1, M2 and a prism, as shown in 

Fig. 2.8 (A). The optical length of the cavity can be modified by moving the prism in a way that does not 

change the angle of laser beams. Therefore the DeltaConcept cavity has a stable pointing of the output 

beam.  

Regarding the frequency doubling efficiency, τFD, the WaveTrain, MBD-200 and SHG pro units are able to 

produce SHG radiation on levels of 4-10% at 800 mW, 16% at 1000 mW and 5-10% at 1000 mW, 

respectively [w2-1],[w2-2],[w2-3] as shown in Table 2.3. All of the three frequency doublers have approximate 

enhancement rates 𝑒𝑟 ≈  100 times that of the fundamental laser, (according to the Equation (2.16), τFD = 

er ∙ τSHG ). Since the frequency doubling conversion efficiency τFD < 16 % (see Table 2.3), we get   

 𝜏𝑆𝐻𝐺 < 0.16 %                                                                                                                     ------ (2.17) 

It should be noted here that the power of the fundamental wave has been enhanced, and the power is 

about 100 W. Therefore, when the input power is 1 W, and the power enhanced wave is (≈ 100 𝑊𝑎𝑡𝑡), the 



Chapter 1 Deep Ultraviolet (DUV) Light Sources    
 

23 
 

SHG conversion efficiency can also be considered as low SHG conversion case. Then the equations (2.13) 

and (2.12) can be used to estimate the frequency doubling efficiency τFD and the output power of doubled 

frequency, respectively, if the power of input laser cannot reach the demanded power level.   For a sample, 

if the input power of fundamental wave is 100 mW, and a MBD-200 frequency douler is used, the limiting 

Frequency Doubling conversion efficiency is: 

 𝜏𝐹𝐷 = 16 % ∙
100 𝑚𝑊

1000 𝑚𝑊
= 1.6 %     

and the output power of the doubled frequency wave is: 

 𝑃 = 100 𝑚𝑊 ∙  𝜏𝐹𝐷 = 1.6 𝑚𝑊  

On the other hand, we can also estimate the power of the doubled frequency for directly SHG, i.e. for the 

case of using no enhancement cavity. For example, when the input power of fundamental wave is 1W, the 

SHG efficiency for the fundamental wave with a power of 100 W is <0.16 % as shown in equation (2.17). 

Then, according to equation (2.13), the SHG efficiency for a fundamental wave with power of 1 W is  

 𝜏𝑆𝐻𝐺 < 0.16 % ∙
1 𝑊

100 𝑊
= 0.0016 %  

Since the power of the fundamental wave was not enhanced, 𝑒𝑟 = 1 𝜏𝐹𝐷 = 𝜏𝑆𝐻𝐺 . According to equation 

(2.12), therefore the output power of the doubled frequency is 

 𝑃 < 1 𝑊 ∙ 𝜏𝐹𝐷 = 1 𝑊 ∙ 0.0016 % = 1.6 × 10−5 𝑊                                                        ------ (2.18) 

As this above result shows, it is clear that the achieved power of the DUV laser is very low by direct SHG for 

the case of a 1 W CW fundamental wave.  

Table 2.3: compare Frequency Doubling conversion efficiency τFD of three Frequency doublers. 

Frequency 
doubling unit 

Corresponding range 
of wavelength (nm) 

Frequency Doubling 
conversion efficiency τFD 

Power Demand 
(mW) 

DUV output 
power (mW) 

WaveTrain 410-1600 4~10 % 800 32~80 

MBD-200 455-1070 16% 1000 160 

SHG pro 410-1600 5~10 % 1000 50~100 
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 Fig. 2.8: (a) The schematic of frequency doubler equipped with the DeltaConcept WaweTrain 

ring cavity.  (b) The schematics of a typical frequency doubler, equipped with a so called bow-tie ring type 

cavity.   

 

2.1.3.5    SHG in Periodically Poled Nonlinear Crystal Waveguides (PPNCW) 

These devices are made by ferroelectric domain engineering. The nonlinear crystal waveguide devices are 

providing very compact and simple devices to achieve enhanced SHG efficiencies [2.12], [2.22]. As high as 99% 

SHG efficiency has been reported by using this method with a periodically poled ferroelectric lithium 

niobate (LiNbO3) waveguide [2.22]. It is also suitable for DUV generation when BBO is used [2.12]. Since some 

kinds of PPNCW has been commercial available, we will focus on discussing this.    

Presently, the wavelength limitation of PPNCW is 280 nm because of the transparent edge of the LiTaO3 

crystal, the best transparent crystal in the UV range, for which periodically poled waveguides have been 

implemented by [2.27]. Although wavelength of 280 nm is not short enough for a DUV laser, it is a potential 

as a method to achieve DUV laser in a future compact device.  

The key of this method to achieve enhanced SHG efficiency is to use wave guiding to maintain the high 

power density of the fundamental wave that is propagating inside the nonlinear crystal. As shown in Fig. 

2.9 (a), the optical wave because of diffraction cannot be entirely focused (to a point) and will after the 

convergence open up again when it propagates in the bulk device, so single-pass high conversion efficiency 

cannot be achieved. In waveguides, the mode profile is confined (by doping layers) to a transverse 

dimension on the order of the wavelength, and hence high optical intensities can be maintained over 

considerable distances and in this way it is possible to improve the conversion efficiency. As shown in e.g. 

equation (2.10) or (2.13), the SHG efficiency is inversely proportional to the cross-section area A, and 

quadratically proportional to the interaction length Z in the crystal. Thus a long and low-loss waveguide can 

achieve a very high SHG efficiency. 

Since waveguide SHG is a single-pass (no enhancement cavity is needed) process, there being an advantage 

is that the fundamental wave of a multi-longitudinal mode laser can be adapted.  
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 Fig. 2.9: (a) The laser beam is propagating in a bulk chip: The more focussed, the smaller is 

the beam waist (cross section) but also the shorter the length of high interaction (Rayleigh length). b) The 

laser beam is confined by means doping layers in the waveguide chip allowing for high power density and 

hence high SHGs. 

 

2.2 Diode Lasers 

Diode lasers (= laser diodes) are electrically pumped semiconductor lasers in which the gain is generated by 

an electrical current flowing through a p–n junction or (more frequently) a p–i–n structure. The structural 

sketch of a typical semiconductor laser devise is shown in Fig. 2.10. The laser resonator cavity is formed 

between the p and n type layers and by the two polished coated (or uncoated) end facets. Also so called 

vertical cavity VCSEL lasers have recently been developed. They are cheaper to mass fabricate because they 

do not need to be polished [2.36]. 

 

 Fig. 2.10: Structural sketches of two kinds of semiconductor lasers, (a) edge emitting laser, (b) 

Vertical-cavity surface emitting laser (VCSEL). DBR: Distributed Bragg reflecting layers.  
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2.2.1 Emission Wavelengths of diode lasers 

The emission wavelengths of diode lasers today cover the range from Infrared to UV. The wavelength of the 

emission is essentially determined by the band gap of the laser-active semiconductor material: the photon 

energy is close to the band gap energy. Table 2.4 gives an overview on typical material systems.  

         Table 2.4: Emission wavelengths of various types of laser diodes. 

Laser diode material  
(active region / substrate) 

Typical emission wavelengths 
(nm) 

AlGaN 342 (336) 

InGaN / GaN, SiC 380, 405, 450, 470  

AlGaInP / GaAs 635, 650, 670  

AlGaAs / GaAs 720–850  

InGaAs / GaAs 900–1100  

InGaAsP / InP 1000–1650  

Most laser diodes emit in the near-infrared and red spectral region. Since the successful demonstrations of 

the electrically driven stimulated emission (laser operation) from GaInN/GaN quantum wells [2.28], [2.29], the 

nitride semiconductors have been expanding their range of lasing wavelengths from the red and yellow into 

the green, blue and ultraviolet. These latest colors are of interest, because the SHG of these lights will be in 

the range of DUV. These lasers all are commercial available. The shortest wavelength ever reported by the 

end of 2010 for an electrically driven semiconductor laser is 336 nm [2.30], being emitted from an indium-

free AlGaN-based laser diode. 

 

2.2.2 Emission Bandwidth of Diode Lasers 

Most laser diodes emit a beam with an optical FWHM bandwidth of a few nanometers (hundreds of 

wavenumber units, cm-1). This bandwidth results from the simultaneous oscillation of multiple longitudinal 

(and possibly transverse) resonator modes (multimode laser diodes). The bandwidth of a laser diode is thus 

too broad for application as a Raman exciting light source, unless a special design was applied to narrow 

the emission bandwidth. Distributed-feedback (DFB) diode lasers and External-cavity diode Lasers are two 

common designs for bandwidth narrowing, therefore perhaps making them more useful for Raman use. 

A (DFB) diode laser is a laser where the active region of the device is periodically structured as a diffraction 

grating. Typically, the periodic structure is made with a phase shift in its middle of the cavity. The structure 

in this way builds a one dimensional interference grating. The grating acts as the wavelength selective 

element for at least one of the mirrors and provides feedback, reflecting light back into the cavity to form 

the resonator. The grating is constructed so as to reflect only a narrow band of wavelengths, and thus 

produce a single longitudinal lasing mode. Thus the emission bandwidth is much narrower, typically with a 

line width in the megahertz region (~10-4 cm-1). 
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Further linewidth narrowing is possible with external cavities and particularly with narrow band optical 

feedback from a reference cavity. Such lasers are called External-cavity Diode lasers. The design is suited for 

edge emitting lasers as well as Vertical Cavity Surface-Emitting Lasers. 

 

2.2.3 Transverse Mode of Diode Lasers 

As mentioned above, the resonance cavity of laser diode is formed by two end facets. These two end facets 

are plane and parallel. According to the theory of an optical cavity, the setup is often not a stable cavity, 

meaning that the laser transverse mode is not defined by end the facets. Actually, the transverse mode 

depends on the optical active medium layer that has a waveguide structure.   

A so-called single mode diode laser (also called Ridge waveguide diode laser) implicates that the transverse 

mode of output laser is single mode and the active area is a single mode waveguide or cavity. The single 

mode of a waveguide is slightly different from the free space single mode TEM00. Therefore the beam 

quality of a single mode diode laser is not as good as what is found for a gas laser or a solid-state laser. 

Normally the value of M2 for a practice single mode diode laser is above 1.2.  

For the single mode diode laser, since the width of the active layer is limited, it is difficult to increase the 

pump current too much. The maximal output power is hence normally limited to about few hundreds 

milliwatt. In order to increase the output power the width of active area must be broadened, but then the 

transverse mode will not be maintained in single mode. A special technique, taking advantage of a tapered 

amplifier, has been developed to solve this problem [2.31]. Such a technology can increase the output to 

above 2 W and can maintain the single mode operation in the tapered active area as shown in Fig. 2.11. 

Combined with a grating external cavity, or a DFB diode laser, it is possible to produce very powerful single 

frequency diode lasers.  

 
 Fig. 2.11: Schematics of a typical tapered diode laser geometry.  
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2.2.4 Discussion and Conclusion  

Until recently, there was still no DUV laser diode available. The shortest wavelength of a diode laser 

reported was 336 nm. Therefore, a frequency conversion technology must be implemented to achieve the 

DUV lasing from diodes. In the following, the possible ways to achieve the DUV emission based on diode 

lasers are presented. To get an overview the information is practically arranged in Table 2.5: 

Table 2.5: The possible methods to convert the wavelength of diode lasers down to the DUV. 

Frequency 
conversion 

Fundamental 
wavelength 

Methods 

 
 
 
Frequency 
doubling 

 
 
 
 
400 - 600 nm 

1. A single-frequency and single-mode diode laser & a SHG 
enhancement cavity 

 

2. A single-mode diode lasers & periodically poled LiTaO3 
waveguides (or He+ implanted BBO waveguides) 

 

3. A single-mode diode laser & a wavelength selector & an 
Amplifier & a SHG enhancement cavity 

 

Frequency 
tripling 

 
600 -900 nm 

4. A single-mode diode laser & a wavelength selector & an 
Amplifier & a Frequency tripling enhancement cavity 

 

Frequency 
quadrupling 

 
800 -1200 nm 

5. A single-mode diode laser & an Amplifier & a 1st SHG 
enhancement cavity & a 2nd SHG enhancement cavity 

 

 

The various methods are explained below: 

1. Recently, one of the leading diode laser producers (TOPTICA Photonics, AG) claimed that they were 

able to produce the record highest possible power (50 mW) diode laser with a single-frequency and 

single-mode (DFB) output at 405 nm [w2-4]. Combined with a frequency doubler, the DUV line of 

202.5 nm may be achieved. The output power of 202.5 nm would be estimated as (by using 

equations 2.12, 2.13, 2.16). 

50 𝑚𝑊 × 10% ×
50 𝑚𝑊

1000 𝑚𝑊
= 0.25 𝑚𝑊 

 

2. A DFB laser combined with a nonlinear crystal waveguide is the most compact setup to achieve 

DUV laser radiation. However, the SHG cannot with the present technology crate UV radiation 

deeper than 280 nm by using periodically poled LiTaO3 waveguides, and the emerging He+ 

implanted BBO waveguide technology that may do it is not yet commercial available [2.12]   

 

3. The schematics of this setup are shown in Fig. 2.12. Compare with the 1st method, a tapered 

amplifier is added to increase the power of the fundamental wave. Therefore the power of 

frequency doubled laser can be significantly increased. However, for the wavelengths of 400-600 

nm, the tapered amplifiers are still not commercial available.  
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4. Frequency tripling can be implement by combining SHG and SFG in one enhancement cavity [2.32]. 

The schematics of setup 4 are similar to the one shown in Fig. 2.12. Instead of one SHG crystal, a 

SHG crystal and a SFG crystal were used in the ring cavity.  

 

5. Frequency Quadrupling can be accomplished by two sequential frequency doubling systems as 

shown in Fig. 2.13. The schematic shows a laser product from TOPTICA Photonics AG. This setup 

has been fully developed [2.33], and is commercial available. The output power level of the DUV 

radiation is 10 mW [w2-5].  

 

 

 Fig. 2.12: The schematics of the 3th method, DL pro, involve a single-mode diode laser 

combined with a grating wavelength selector. A tapered amplifier is adapted as a power amplifier. 

In the final part of the system a bow-tie enhancement cavity is used for the SHG. 
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 Fig. 2.13: The schematic of the 5th method, DL pro is a single-mode diode laser combined 

with a grating wavelength selector. A tapered amplifier is adapted as the power amplifier. Two sequential 

bow-tie enhancement cavities are applied to implement the frequency quadrupling.  

 

 

2.3 Solid-State Lasers 

Solid-state lasers are lasers based on solid-state gain media such as crystals or glasses doped with rare 

earth elements such as neodymium, chromium, erbium, or other ions. (Although semiconductor lasers are 

of course also solid-state devices, they are often not included in the term solid-state lasers.) Many of the 

common dopants are rare earth elements, because the excited states of such ions are not strongly coupled 

with thermal vibrations of the crystalline lattice (phonons), and the lasing threshold can be reached at 

relatively low brightness of pump. Solid state lasing media are typically optically pumped, using either a 

flash lamp or arc lamp, or by laser diodes. Diode-pumped solid-state (DPSS) lasers [2.38] tend to be much 

more efficient, and have become much more common as the cost of high power semiconductor lasers has 

decreased. DPSS lasers have many advantages, in particular a compact setup, long lifetime, and often very 

http://www.rp-photonics.com/laser_crystals.html
http://www.rp-photonics.com/laser_crystals_versus_glasses.html
http://www.rp-photonics.com/semiconductor_lasers.html
http://en.wikipedia.org/wiki/Rare_earth_element
http://en.wikipedia.org/wiki/Laser_pumping
http://en.wikipedia.org/wiki/Optical_pumping
http://en.wikipedia.org/wiki/Flashlamp
http://en.wikipedia.org/wiki/Arc_lamp
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good beam quality. Solid-state lasers can be made in the form of bulk lasers, fiber lasers, or other types of 

waveguide lasers. In the following we will mainly discuss the DPSS lasers in the bulk form. 

Most DPSS lasers emit their lines in the range from red to near infrared (600-3000 nm) [2.39]. In order to 

achieve DUV laser light with present day techniques, frequency tripling, quadrupling or even higher order 

conversion must be used. Higher order frequency conversion is rather difficult to implement and the 

conversion efficiency is very low. Therefore when we are interested in wavelengths below, say, 300 nm and 

want to use a technique not more complicated than quadrupling we should apply a fundamental wave 

which is shorter than 1200 nm. Table 2.6 shows some typical solid-state lasers in these wavelength ranges. 

The lasers can be classified in two types by the width of the laser gain band. The lasers with narrow gain 

band media emit narrow and specific laser lines. Oppositely, the lasers with broad gain band media allow 

achieving of the laser light in a tuneable certain range.  

Table 2.6: Emission lines of solid-state lasers with wavelengths shorter than 1200 nm. 
 

  Lasers host 
medias 

Pump 
wavelengths (cm) 

Emission 
wavelengths (nm) 

DUV lines 
(nm) 

 
 
Solid-
state 
lasers 

Narrow gain band, 
wavelength  
un-tuneable. 

Nd:YVO4 808 nm 1064, 914 266, 213, 229 

Nd:YAG 808 nm 1064, 946 266, 213, 237 

Nd:YLF 797, 792 1053, 1047 263, 211, 262,210 

 
Broad gain band, 
wavelength 
tuneable. 

Ce:LiSAF 266 280-316 280-316, 223-243* 

Ti:sapphire 488 (400-600) 650 – 1100 193-270* 

Cr:LiSAF -- 780 - 1010 -- 

Cr:BeAl2O3 -- 700 - 820 -- 

Yb:YAG -- 1020-1050 -- 

*For particular setups, see [2.45], [2.48]. 
 
 

2.3.1 Wavelength Un-tuneable Solid-state Lasers 

Among narrow gain band (wavelength un-tuneable) laser host media, Nd:YVO4 (Neodymium Doped Yttrium 

Orthovanadate) is the most efficient laser host crystal for diode pumping among the current commercial 

laser crystals, and this applies especially for low to middle power density, mainly because of the absorption 

and emission features for Nd:YVO4. It exhibits much higher pump absorption and gain (due to the very high 

absorption and laser cross sections), a broader gain bandwidth (around 1 nm), and a much broader 

wavelength range for pumping (often eliminating the need to stabilize the pump wavelength) [2.40], [2.41]. 

Another famous laser crystal, Nd:YAG (Neodymium Doped Yttrium Aluminium Garnet) is one of earliest 

laser crystals used, popular since 1964 [2.42], 2 years earlier than the first report on Nd:YVO4 
[2.43]. Although 

the Nd:YAG material is not as good as Nd:YVO4 in many properties, it is however outstanding for high 

energy pulsed laser applications.  

Both laser crystals, Nd:YVO4 and Nd:YAG, have their strongest emission wavelength at 1064 nm and the 

used pump wavelengths are around 808 nm. When high power and low cost 808 nm semiconductor LDs 

appeared, Nd:YVO4 and Nd:YAG came in widespread use. Their wavelength at 1064 nm has become the 

http://www.rp-photonics.com/beam_quality.html
http://www.rp-photonics.com/bulk_lasers.html
http://www.rp-photonics.com/fiber_lasers.html
http://www.rp-photonics.com/waveguides.html
http://www.rp-photonics.com/gain.html
http://www.rp-photonics.com/transition_cross_sections.html
http://www.rp-photonics.com/gain_bandwidth.html
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most common wavelength for solid-state lasers. The corresponding frequency converted lasers (doubled, 

tripled and quadrupled, at respectively at 532, 355 and 266 nm) are also getting much in use. Therefore, 

the 266 nm line is the typical DUV one among solid state lasers, and it can be obtained from many laser 

manufacturers as a most reliable DUV laser source.  Other important wavelengths, 914 nm for Nd:YVO4 and 

946 nm for Nd:YAG, require higher pump energy compared with 1064 nm generation, and they are 

therefore not so common. However they allow generating DUV lines at 229 nm and 237 nm by frequency 

quadrupling. Another neodymium wavelength generator, is the birefringent Nd:YLF (Neodymium-doped 

yttrium lithium fluoride), which eliminates thermally induced depolarization losses. The gain and the 

emission wavelength of Nd:YLF are polarization dependent. There are two lines, 1047 nm or 1053 nm (the 

1047 nm line is the stronger one). Therefore the frequency quadrupled DUV laser lines from Nd:YLF are at 

262 or 264 nm, and the 262 nm line is also a common DUV line of solid-state lasers.  

The above motioned lasers can be operating either pulsed or in continuous mode (CW). The pulses are 

normally generated by the Q-switching technique. Compared with the CW lasers, the pulsed lasers are 

easier to use for frequency quadrupling. Therefore, the price of pulsed DUV laser is lower than the for CW 

DUV lasers.  

As shown in Fig. 2.14 (A) a typical configuration for frequency quadrupling of a pulsed laser may begin with 

a pulsed Nd:YAG laser at 1064 nm, generating frequency doubled 532 nm light by directly passing the beam 

through a SHG crystal (normally, LBO or KTP) (so-called single pass SHG). Then frequency quadrupled 

266 nm light is generated in a second stage SHG crystal (normally consisting of BBO or CLBO). There is still 

quite an amount of power of 1064 and 532 nm light remaining in the output beam. The different lines can 

be separated by a prism or by use of two edge mirrors. Therefore 1064 and 532 nm laser lines can also be 

achieved as by-product lines at the same time. For a CW laser, the first frequency doubling is normally 

achieved by use of intra-cavity SHG; then in a second stage SHG is performed once more by use of an 

external enhancement SHG cavity, as shown in Fig. 2.14 (B). Such lasers are produced by Crastech Laser and 

Coherent Radiation Inc. [w2-7], [w2-8]. Compared with the pulsed lasers, there is no 1064 and 532 nm laser lines 

output from the CW frequency quadrupling laser systems because the 1064 and 532 nm lines are trapped 

in the laser intra-cavity and the external enhancement cavity, respectively, with the purpose of generating 

as high power intensity inside the resonators as possible.  

 

http://www.rp-photonics.com/birefringence.html
http://www.rp-photonics.com/depolarization_loss.html
http://www.rp-photonics.com/gain.html
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 Fig. 2.14: (A) A typical configuration of frequency quadrupling for a pulsed laser: an infrared 

input beam at 1064 nm generates a green 532 nm wave in a first SHG crystal, and a second SHG crystal 

converts this to light at 266 nm. (B) A typical configuration of frequency quadrupling for a CW laser: the first 

frequency doubling is achieved by use of intra-cavity SHG. Then, second stage frequency doubling is 

implemented by use of external enhancement cavity SHG. 

 

2.3.2 Wavelength tuneable solid-state lasers 

Ce:LiSAF (Ce3+:LiSrAlF6) is an attractive laser host medium of this category, since it directly emits the 

tuneable DUV lines, although the tuneable range of 281– 315 nm [2.44] is not deep enough for our purpose. 

The deeper wavelength range of 223 – 243 nm can be achieved by frequency sum mixing with a 1064 nm 

laser [2.45]. In such a procedure, a Ce:LiSAF laser is typically pumped by a frequency quadrupled Nd:YAG 

pulsed laser (at 266 nm); then the generated 281 – 315 nm laser beam from the Ce:LiSAF is sent into a SFG 

(Sum frequency Generation) BBO crystal together with the fundamental wave of the Nd:YAG pulsed laser 

(1064 nm laser), resulting in a 223 – 243 nm radiation output. However, such complicated lasers are not 

commercially available.   

Titanium-doped sapphire is an outstanding medium for broad gain band (wavelength tuneable) laser host 

media, working in the range from red to near-infrared. Another potential rival laser type is based on the   

Cr3+:LiSAF (Cr3+:LiSrAlF6) crystal [2.46]. The gain bandwith of the latter type is inferior as shown in Table 2.6. Ti: 

sapphire was introduced in 1986 [2.47], and thereafter Ti:sapphire lasers quickly replaced most of the dye 

lasers, which until then had dominated the fields of ultra short pulse generation and widely wavelength-

tuneable laser emission. The wavelength of the Ti:sapphire laser is widely tuneable in the range of 650-

1100 nm and by frequency tripling or quadrupling, tuneable DUV laser radiation can be achieved. The 

Ti:sapphire laser is usually pulsed, generated by the mode-locking technique or pulsed pumping laser. It has 

previously been applied for DUV Raman spectroscopy in some important research groups, such as the 

Asher group and the Spiro group [2.48], [2.49].  

In the following, we present two interesting tuneable UV laser systems that the Asher group used to realize 

tuneable DUV laser radiation in a broad range of 193 – 270 nm [2.48]. The lasers are of the kind Indigo-S from 

http://www.rp-photonics.com/infrared_light.html
http://www.rp-photonics.com/ultrashort_pulses.html
http://www.rp-photonics.com/tunable_lasers.html
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Positive Light Co. (Los Gatos, CA.) The two laser systems are based on Ti: sapphaire wavelength tuneable 

lasers, and utilize frequency conversion techniques, second harmonic generation (SHG) and sum frequency 

generation (SFG). Two laser systems are required because BBO is not of use for frequency doubling below 

206 nm due to no phase-matching exist below this wavelength. By using the other way to achieve 

frequency quadrupling, i.e. SFG of the 3rd harmonic generated wave and the fundamental wave to achieve 

the 4th harmonic wave generation, BBO can be used to generate the deeper wavelength. However, it needs 

three stages of SFG to reach the 4th harmonic generated wave. The power conversion is therefore relative 

lower. 

Both of these laser systems are pumped by an acousto-optically Q-switched Nd:YLF system, operating at a 5 

kHz frequency to generate the 1053 nm wavelength fundamental in pulsed mode - with pulses of 100 to 

350 ns duration - depending on the pulse energy. The Nd:YLF system is intra-cavity frequency doubled using 

a lithium tri-borate (LBO) crystal. Although the absorption peak of the Ti:sapphire is at 488 nm, the 

Ti:sapphire crystal has a broad absorption range of 400 – 600 nm. Therefore, this frequency doubled Nd:YLF 

laser - emitting radiation at 527 nm - can be adopted as a pumping laser. 

The first system (shown on Fig. 2.15 (a.1) and (a.2)) uses two successive frequency doublers (two sequential 

SHGs) to generate tuneable light from 210 to 240 nm. The first stage of frequency doubling was achieved 

by means of intracavity SHG. The laser cavity of the fundamental wave is constructed by three mirrors, M1, 

M2 and M3, as shown on Fig. 2.15 (a.1). For a normal cavity with two mirrors, there is only one possible 

beam waist where the laser crystal (Ti:sapphire) could be placed. In order to generate a second beam waist 

for placing another SHG crystal in the laser cavity, a cavity with three (or more) mirrors was therefore 

adopted. The frequency selector is formed by two prisms combined with the set of etalons. The laser pulse 

is generated by mode-locking. In the layout of the further SHG (denoted as FHG shown in Fig. 2.15 (a.2)) the 

lenses are placed in the beam to focus the first order SHG wave on the FHG (actually SHG crystal) to 

generate the quadrupled frequency. The SHG crystals should have precisely controlled temperature to 

achieve phase matching conditions for the different fundamental waves. Such temperature controlled 

phase matching is the so-called noncritical phase matching. The overall efficiency is about 20%, which 

results in about 10 – 40 mW of UV radiation within the range of 210 nm to 240 nm. 

The purpose of the second system is to generate even shorter wavelengths, in the range of 193- 210 nm, 

and also the tripled frequency in the range of 240 – 270 nm. The layout is shown in Fig. 2.15 (b.1) and (b.2). 

The fundamental laser cavity is a normal two mirrors laser cavity, constructed with M1 and M2 (M2 is the 

output coupler). The 193–210 nm laser harmonics package consists of a second-harmonic generator (SHG) 

unit that converts the 772–820 nm Ti:Sapphire IR fundamental to light of 386–410 nm with an efficiency of 

about 20%. The THG crystals mix the 386–410 nm light with the IR fundamental to produce the 257–273 

nm third harmonic with an efficiency of up to 10%. The final stage mixes the third harmonic with the 

residual fundamental to produce 193–210 nm light with a somewhat lower efficiency of about 5%. The 

deep UV output power depends on the wavelength and varies from about 9 mW at 200 nm to 3 mW at the 

edges of the 193–210 nm spectral region.  
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 Fig. 2.15: Optical layouts for two pulsed laser systems to provide a broad tuneable DUV 
range of 193 -270 nm. (a.1) An intra-cavity doubled Ti:Sapphire laser; (a.2) The frequency doubling for 210 -
240 nm generation (b.1) Fundamental Ti:Sapphire laser; (b.2) Sum frequency generation provide 257 – 273 
nm output by mix of SHG with fundamental wave; further sum frequency generation provides 193 – 210 
nm output by mix of THG with fundamental wave. The graphics are courtesy of Asher et al. [2.48].  

 
 

2.4 Gas Lasers 

Gas lasers are based on gases as the gain media. The types of gases not only include normal gases such as 

N2, CO2, and noble gases such as He, Ne, Ar and Kr, but also include metal vapors such as Cu (Copper), Ag 

(Silver) and Cd (Cadmium).  The laser-active entities are either single atoms or molecules, and are often 

used in a mixture with other substances having auxiliary functions. In most cases the energy pumping is 

implemented by an electric discharge. During operation, the gas is often in the state of plasma, containing a 

significant concentration of electrically charged particles. It usually requires a high-voltage high-current 

supply. 

Most gas lasers emit with a high beam quality, since the gas introduces only weak optical distortions, 

despite considerable temperature gradients. Gas laser examples are e.g. the He-Ne laser and Argon-ion 
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Laser with excellent beam quality. However other gas lasers have poor beam quality, such as several hollow 

cathode gas lasers and excimer lasers (obtained from excited dimers in noble gas - halogen gas mixtures). 

 

2.4.1 Hollow cathode metal ion lasers 

Hollow cathode metal ion lasing was first demonstrated at the University of Budapest in 1974 [2.50]. The 

emission wavelength can be 224.3 nm (from a helium silver (HeAg) hollow cathode laser) or 248.6, 260.0 

and 270.3 nm (from a neon copper (NeCu) hollow cathode laser). The linewidths of all of these semi-CW 

emission lines are narrow, less than 0.1 cm-1. These lasers have been previously applied for resonance 

Raman spectroscopy studies of the nucleic acids and the aromatic amino acids [2.9]. 

The presented lasers differ significantly from other metal vapor lasers in that the metal vapor pressure is 

generated by sputtering of a metal from a cathode in a low pressure precious gas rather than by 

evaporation from a hot metal source, as for the He-Cd lasers [w2-9]. The hollow cathode sputtering metal ion 

lasers operate at room temperature and require no preheating or standby power. The laser can be built as 

compact as the He-Ne lasers as shown in Fig 2.16 (a). Fig. 2.16 (b) illustrates the structure of the HeAg 224.3 

nm hollow cathode laser tube. The active medium of this laser consists of singly ionized silver ions formed 

by sputtering within a silver hollow cathode tube, with an about 3 mm inside diameter. Helium and other 

dopant gases are employed as buffer gases to ionize and excite the sputtered silver atoms to an excited 

state from where lasing occurs. 

The hollow cathode discharge is formed between the hollow cylindrical silver cathode and an opposite 

anode via a slot in the side of the cathode. The pressure of the buffer gas mixture is optimized for the 

output at 224.3 nm. The threshold discharge current for the laser output can be less than 1 A. The laser 

cavity is constructed from a flat 0.75% transmission output-coupling mirror, and a 2 m focal length concave 

high reflecting mirror. The distance between the two mirrors of the cavity is 40 cm [2.8]. According to the 

above parameters of the laser cavity, the beam profile of the laser operating in an ideal TEM00 mode can be 

found by the Intarsia program [w2-10] which is a laser cavity design software, as shown in Fig. 2.16 (c). The 

software shows that the radius of the TEM00 laser beam should be 0.239 mm on the output-coupling mirror. 

However, the radius of an actual output laser beam is about 1.25 mm that is much bigger than the radius of 

an ideal TEM00 laser beam as motioned above. The mode quality of the output beam was determined from 

the measured, focused spot size, and it gave a value of M2 = 18. Accordingly, the area of the focused spot is 

182 times larger than the ideal TEM00 focused beam spot, meaning that we had a bad beam quality [2.52].  

The bad beam quality might be caused by strong disturbances of the puttering. 

Presently, these lasers cannot stand for high current (such as >10 A) continuously, because the heat effects. 

In order to minimize the heating, typically the lasers should be operated at a 1 % duty cycle, and the pulse 

width of the laser output can be varied from a few microseconds to a millisecond. The pulse rate can be 

from 2 pulses per second to 20 pulses per second. Since the laser output behaves like a CW wave during the 

pulse duration, it is so-called quasi-CW. 

http://en.wikipedia.org/wiki/Dimer_(chemistry)
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The power can reach peak values as high as 200 mW [w2-11]. In a typical 1% duty cycle, the average power is 

2 mW. Considering the low laser output power and the poor laser beam quality under these conditions, the 

beam will be too weak for measuring of most of the traditional Raman experiments, especially unsuitable 

for the confocal microscopy because of the poor beam quality.  

 

 

 Fig. 2.16: Details of a typical hollow cathode metal ion laser:  (a) Photo of the unit with the 

cover removed. The compact power supply is integrated in the laser head. (b) The schematic structure of 

laser resonator. (c) The corresponding TEM00 laser beam profiles can be found by use of the Intarsia 

software [w2-10]. 

 

2.4.2 Argon-ion lasers 

The Argon laser was invented in 1964 by William Bridges at Hughes Aircraft Co. [2.51]. Argon lasers may emit 

at 13 different wavelengths from the visible, near-visible, and ultraviolet spectrum, including: 351.1 nm, 

363.8 nm, 454.6 nm, 457.9 nm, 465.8 nm, 476.5 nm, 488.0 nm, 496.5 nm, 501.7 nm, 514.5 nm, 528.7 nm, 

1092.3 nm.  The lines arise from the different transitions in the Ar+ ion, sometimes called Ar(I)-lines [2.55]. 

These can be preferentially selected using an intra cavity prism. This prism selects the specific wavelength. 

Removal of the prism allows for broadband operation, that is, several wavelengths are running rather than 

only a particular wavelength.   

The most prominent and most used wavelengths in the argon laser are the 514.5 nm green line and the 

488.0 nm blue line. Fig. 2.17 shows the typical wavelengths and relative power levels from a usual size 4 

Watt Argon laser [w2-12]. Argon lasers are normally rated by the power level sum produced by the lasing 

wavelengths from 514.5 nm to 454.6 nm. The wavelengths outside of this standard visible range, including 

an infrared line at 1090 nm and the two rather intense UV lines at 351.1 nm and 363.8 nm are available by 

changing the laser cavity mirrors. These two UV lines are produced from transitions between states in 

double-ionized argon which require higher than normal laser current levels, and are therefore available 

only from the highest power models.  
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 Fig. 2.17: The typical wavelengths and relative power levels from a 4 Watt size Argon laser. 

The structure of a usual Argon laser is shown on Fig. 2.18. The key component of the argon ion laser is an 

argon-filled tube, made of e.g. quartz or beryllium oxide ceramics, in which an intense electrical discharge 

between two hollow electrodes generates plasma with a high density of Argon (Ar+) ions. A solenoid around 

the tube is used for generating a magnetic field, which increases the output power by better confining the 

plasma. The intracavity prism is used to select the lasing line. Without an intracavity prism, argon ion lasers 

have a tendency for multi-line operation with simultaneous output at various wavelengths. When the 

intracavity prism is used, the output laser line is in so-called single wavelength mode. It should be noted 

that it is different from the so called single frequency mode. Single frequency commonly means single 

longitudinal mode operation. Single wavelength just means single laser line output, probably running in 

multi-longitudinal mode operation.  For a typical Argon-ion laser, a single wavelength laser line is actually 

made up of a large number of longitudinal modes spaced over a frequency bandwidth of approximately 5 

GHz, as shown on Fig. 2.2. These modes are related to the distance between the two mirrors making up the 

optical cavity. The frequency spacing between these longitudinal modes is c/2L, where c is the velocity of 

light and L is the mirror spacing. Thus a 1 meter cavity length has a 150 MHz longitudinal spacing between 

the modes.  

 

Fig. 2.18: the typical structure of Argon laser oscillator. 

A laser device, containing a tube with a length of the order of 1 m, can generate some Watts of output 

power at the line of 514.5 nm, thereby using several kilowatts of electric power [w2-13]. The voltage drop 

across the tube may be about 100 V (or a few hundred volts), whereas the current can be several tens of 

amperes DC, as the gas has to be ionized. It normally requires a three-phase electric power supply. The 

dissipated heat must be removed with a water flow around the tube. Commonly one uses a closed-circle 

cooling system containing a chiller, which further adds to the power consumption. On sale are also smaller 

air-cooled argon ion lasers, generating some hundred of milliWatts of output power from several hundred 

Watts of electric power [w2-14], [w2-15].  
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For such power levels, it is to achieve a few mW of the DUV lines by use of intracavity frequency doubling. 

The mW scores of e.g. the lines at 257.3 or 244 nm are shown later in Table 2.7.  

Since Argon-ion lasers emit several laser lines in the range of 400 nm – 600 nm that can be used as the 

fundamental pumping laser line for SHG to achieve several DUV lines at the wavelengths of 227.3 nm, 229.0 

nm, 232.9 nm, 238.2 nm, 244.0 nm, 248.3 nm, 250.9 nm, 257.3 nm and 264.4 nm.  

As mentioned in equation (2.16), for a 1 Watt fundamental wave, the maximum power of doubled 

frequency wave (DUV light) is only about 1.6 × 10−5 𝑊𝑎𝑡𝑡 by using a direct SHG process. Therefore, in 

order to obtain a useful amount of intensity of DUV light, a frequency doubling technique with higher 

power conversion efficiency is required. There are two techniques that can be used to increase the 

frequency doubling efficiency, i.e. use of either an external SHG enhancement cavity or use of intracavity 

SHG.  

 

2.4.2.1 External enhancement cavity SHG for an Argon-ion laser.  

Since the external enhancement cavity is a separate device, external enhancement cavity SHG may be 

suitable for upgrading a pre-existing laser. As mentioned above, the external enhancement cavity SHG 

method requires that the fundamental laser should be running in single-frequency mode (single-

longitudinal mode). If the pre-existing laser is a multi-longitudinal mode laser, firstly, the laser must be 

upgraded to a single-frequency laser. This can be obtained by implanting an etalon assembly in the laser as 

a longitudinal mode selector. Normally, the manufacturers of Argon-ion lasers also provide such etalon 

assembly extra complements, such as the LEXEL™ Model 503 Temperature-Controlled Etalon Assembly [w2-

16]. The Etalon Assembly utilizes normally a solid fused-silica plate in a precisely temperature-controlled 

oven to provide ultimate frequency stability and controlled mode tuning.  When installed in a LEXEL™ ion 

laser, extremely stable single frequency operation can be achieved, with an output linewidth of 

approximately 10-4 cm-1 (3 MHz). However, the output power will be reduced to approximately 50% 

because the etalon induces an intra-cavity loss from surface reflections. Because of the power reduction, 

except for 488 and 514.5 nm lines, other lower power lines for a 4 W level laser will be difficult to use for 

achieving external enhancement cavity SHGs by frequency doubling.  

 

2.4.2.2 Intracavity SHG for an Argon-ion Laser 

Intracavity SHG (or intracavity frequency doubling) is an optical nonlinear process that involves placing a 

nonlinear crystal within the laser resonator. There are actually two different reasons why this procedure 

works well: 

 Within the laser resonator, the optical powers and thus the intensities achievable are much higher 

(also higher than the external cavity enhancement), because of increased conversion efficiency per 

path by often more than an order of magnitude.  
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 It is normally sufficient to achieve a single-pass-conversion-efficiency of just a few percent, because 

the unconverted power remains in the laser resonator and can be reused rather than being lost.  

Since we already have an existing laser in our laboratory, at first, we investigated if it would be possible to 

utilize it for frequency doubling. During our investigation, it becomes clear that two main modifications 

must be made for the already existing Ar-laser to implement intracavity SHG.  

1. The output coupling mirror must be changed to a totally-reflective mirror for the fundamental 
wave and highly-transparent for SHG. 

For our typical Argon-ion laser (a Coherent Innova CR4), the output coupling mirror is a partly-transparent 

dielectric mirror. The output coupler mirror transparency is about 5% for the fundamental wave [2.52], 

meaning that the laser power inside the resonator is 20 times higher than the output power. This power is 

obviously not enough to achieve useful SHG. In order to increase the laser power inside the resonator, the 

output coupling mirror should be changed to a totally-reflective mirror for the fundamental wave. In this 

case, the fundamental wave would be trapped in the cavity and the power inside cavity will be extremely 

increased. On the other hand, the mirror should be highly transparent for the DUV light, thus the DUV light 

can be obtained from outside. 

2. The laser cavity should have a beam waist of 𝒓𝒂𝒅𝒊𝒖𝒔 ≈ 𝟐𝟎 µ𝒎 to achieve a high enough power 
density for making the BBO crystal work in SHG. 

Being a gas laser, the output power is affected by the quantity of active ions in the plasma tube: the more 

ions involved the more output power. The quantity of ions depends on the volume of the laser beam 

propagating in the plasma tube. Therefore the laser beam is designed to have a large radius in the plasma 

tube.  Normally, for a 2-mirror laser cavity with the length of 1 meter, the rear mirror (M1) is a plane mirror 

and the front mirror (M2) is a concave mirror with r = 10000 mm, respectively. The beam radius is about 0.7 

mm, as shown in Fig. 2.19 (a). The figure shows the interface panel of the laser cavity design software of 

Intarsia, for the case example of the optical parameters of a typical 2-mirror laser cavity of an Argon-ion 

laser. 

The optical parameters for a typical Argon-ion laser cavity (for 488 nm emission) as obtained by use of the 

Intarsia program are shown below: 

 M1: the rear end mirror, a plane mirror. 

 M2: the front end mirror, a concave mirror with a radius of curvature r = 10 m. 

 Length of cavity: 1 m.  

 Beam waist: horizontal radius = 0.681 mm, vertical radius= 0.680 mm, located on rear end mirror 
M1. 

 Beam radius on M2 is 0.6911 mm and 0.6922 mm on horizontal and vertical respectively.  

As motioned above, a minimal radius of 0.68 mm of a laser beam is too large for SHG. An optimal laser 

beam should have a tiny beam waist because the SHG efficiency is inversely proportional with the cross 

section area of the beam, as shown in equation (2.13). However the laser beam waist should not be too 

small because the smaller beam waist responds the shorter Rayleigh length. The optimized size of the beam 

http://cdict.net/?w=inversely
http://cdict.net/?w=proportional
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waist can be found by the Boyd-Kleinman expression [2.53]. It requires further optical knowledge to do such a 

calculation. However the result that can be found from the literature is ≈ 20 𝜇𝑚 for a nonlinear crystal 

with a length of 10 mm [2.52]. Therefore, when designing a laser cavity for intra-cavity SHG, on the one hand 

it is needed to keep the laser beam radius large in the plasma tube (radius = 0.691 mm) to maintain the 

efficiency of the energy pumping of the fundamental wave, and on the other hand it is also needed to have 

a tiny beam waist (𝑟𝑎𝑑𝑖𝑢𝑠 ≈ 20 𝜇𝑚) for the place of the SHG crystal to achieve a high SHG efficiency. The 

simplest two-mirror cavity cannot satisfy these two conditions. Therefore, a folded cavity with 3 or 4 

mirrors has to be chosen, as shown in Fig. 2.19 (b) and (c).  

Typical optical parameters of a 3-mirrors folded laser cavity for the intra-cavity SHG Argon-ion laser are 

shown below:  

 M1: the rear end mirror, a plane mirror. 

 M2: the folding mirror, a concave mirror, radius of curvature r = 200 mm. 

 M3: the front end mirror, a plane mirror. 

 Length of cavity: 1.3 m.  

 Beam waist 1: horizontal radius = 0.681 mm, vertical radius= 0.706 mm, located on rear end mirror 
M1. 

 Beam radius on M2 is 0.6945 mm and 0.7180 mm on horizontal and vertical respectively. Beam 
waist 2: horizontal radius = 0.022 mm, vertical radius= 0.021 mm, located on the front end mirror 
M3. 

For a 4-mirrors cavity, the results are shown below: 

 M1: the rear end mirror, a plane mirror. 

 M2: the folding mirror, a concave mirror, radius of curvature r = 200 mm. 

 M3: the folding mirror, a concave mirror, radius of curvature r = 200 mm. 

 M4: the front end mirror, a plane mirror. 

 Length of cavity: 1.9 m.  

 Beam waist 1: horizontal radius = 0.640 mm, vertical radius= 0.784 mm, located on the rear end 
mirror M1. 

 Beam radius on M2 is 0.6588 mm and 0.7941 mm on horizontal and vertical respectively.  

 Beam waist 2: horizontal radius = 0.022 mm, vertical radius= 0.019 mm, location is nearly on the 
centre of M2 and M3.  

Actually, the above 3-mirrors and 4-mirrors cavities are similar to the two different designs which were 
adopted by the companies Cambridge-Lexel-lasers and Coherent-Radiation-lasers for their lasers, SHG-95-
QS and INNOVA- 90C-FRED, respectively. The intrinsic condition for the different designs is the fixed 
distance between M2 and the BBO crystal, as shown in Fig. 2.19 (b) and (c). This is because a beam radius 
w(z) = 0.6945 on M2 is required for efficient energy pumping from the plasma tube (see Fig. 2.19 (b)) and a 
beam radius w0 = 0.022 on the BBO crystal is required for an efficient SHG conversion. As mentioned above, 
according to equation (2.2) the distance z comes out as   𝑧 ≈  9.9 𝑚𝑚 . But unfortunately, in our already 
available laser head there was not space enough for this distance and for the mirror mount. 
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 Fig. 2.19: Panels to obtain laser cavities parameters by use of the Intarsia program for 3- or 

4-mirrors cavity design. (a) This upper panel shows that the profile of the laser beam of a 2-mirror cavity is 

a nearly collimated beam with a radius of  𝑤0  ≈  0.7 𝑚𝑚. (b) The tasks of a 3-mirrors cavity design is to 

maintain a 𝑤0  ≈  0.7 𝑚𝑚 beam and to generate a second beam waist with a radius of 𝑤0  ≈  0.02 𝑚𝑚 . 

The parameter for the mirror M2 is calculated as a concave mirror with r = 200 mm. The distance between 

M2 and BBO is also found as   𝑧 ≈  10 𝑚𝑚 . (c) The function of a 4-mirror cavity is same as the 3-mirror 

cavity.   
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2.4.2.3 The Lexel 95-SHG-QS Argon-ion Laser from Cambridge Laser Laboratories Inc. (USA). 

The two mentioned lasers, 95-SHG-QS and Innova 90C FRED, are two well known types of intracavity 

frequency-doubled Argon-ion lasers that are produced by Cambridge Laser Laboratories Inc. and Coherent 

Radiation, Inc. I have experience with both lasers, and feel that 95-SHG-QS is much easier to operate, 

switching the output wavelength between the visible and UV, or between different UV lines. In the 

following we will mainly discuss the 95-SHG-QS laser. 

As already mentioned the 95-SHG-QS Argon-ion laser (Fig. 2.20 a) is an intracavity frequency-doubled 

system, equipped with a nonlinear BBO crystal designed to produce deep-UV coherent laser light by Second 

Harmonic Generation (SHG). A three-mirror folded cavity design was adopted.   

 

 Fig. 2.20: (a) The optical layout of the 3-mirrors cavity of a 95-SHG-QS Argon-ion laser; (b) 

The optical layout of the 4-mirrors cavity of an Innova 90C FRED Argon-ion laser. 

The special feature of 95-SHG-QS is the Quick-Switch design, as also shown in Fig. 2.20. The folding mirror 

M2 is mounted on a Locating slide shaft (not shown in the figure). When M2 is moved out of the laser 

cavity, the mirrors M1 and M2’ form the normal two-mirrors Argon ion cavity. The M2’ is a normal visible 

output coupler mirror. Therefore, the laser working in this condition is optimized for visible line output. 

When the M2 is moved back into the cavity, the mirrors, M1, M2 and M3 form a 3-mirrors folded cavity. As 

motioned above, these three mirrors are totally-reflective for visible light. The mirror M2 is a dielectric 

mirror. However such so-called totally-reflective mirrors also can transmit a unavoidable small amount of 

light (such as 0.01%). Since the laser power level inside the cavity is very high (above 100 W under usual 

operation, we observe the visible laser beam leaking out from the visible output aperture when it is not 

blocked physically.  

The BBO nonlinear crystal is normally placed at the position where the most tiny beam waist is located. 

However, this tiny beam waist position is located exactly on the mirror M3. Therefore the crystal should be 

placed ideally as close as possible to M3. But it still needs a gap to avoid scratching during the adjustment.  

The Lexel Laser company engineers suggest a gap of 2 mm. 
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When the BBO is placed in the cavity, it will cause the power to drop for the fundamental wave. It is so, not 

only because of the conversion of power from the fundamental wave to the frequency doubled wave, but 

also because of the surface reflections of BBO crystal. Since the power of the fundamental wave is very high 

inside the laser cavity, the power losses by surface reflections become significant. There are two techniques 

that can be used to reduce the surface reflection losses:   

 Brewster angle cutting (adopted for Innova 90C FRED), 

The Brewster angle cutting can minimize the surface reflection for the linearly-polarized light. In the Innova 

90C FRED there is room for this.  However, it is not suitable for the above three-mirror folded 95-SHG-QS 

cavity, because a tilted surface would require more distance between M3 and the BBO crystal to avoid the 

touching.  

 Anti-reflective coating (adopted for 95-SHG-QS),  

The intracavity SHG requires high quality anti-reflective coating to maintain the high internal power in the 

cavity. A simple one or two layer anti-reflective coating does not satisfy this situation. Therefore multi-layer 

coating is demanded. Deposition of multi-layer coatings on an anisotropic medium (such as the BBO crystal) 

is difficult and is therefore increasing the price of the crystal. On the other hand the anti-reflective coating 

can protect the crystal surface. This is a good thing to avoid deliquescence of slightly hygroscopic materials.  

Comparing 95-SHG-QS with Innova 90C FRED, both lasers are allowing us to switch the output wavelength 

between UV and the visible, or between different UV lines. The former alignment is much easier to achieve 

in 95-SHG-QS because of the advanced Quick-Switch design. Oppositely, the switching of wavelength for 

the Innova 90C FRED is inconvenient. Firstly, one needs to replace three mirrors, M2, M3 and M4 as shown 

on Fig. 2.20 (b). Secondly, it is necessary to start the laser cavity alignment from a zero output light state, 

meaning that one has to slowly scan the angle of M4 in horizontal and vertical directions. Furthermore, the 

Brewster angle cutting also makes the alignment troublesome since the acceptable angle of the BBO crystal 

is quite small.  

 

2.4.2.4 The Operating Cautions for Switching Wavelengths between the DUV Lines. 

Due to the Phase-matching condition, SHG for each of various wavelengths requires respective cutting 

angles matching each particular wavelength. Therefore we have to change between the different BBO 

crystals to have doubling for the different wavelengths. Our laboratory at present is equipped with a Lexel 

95-SHG-QS Argon-ion Laser. Since the operating manual does not specify the details of switching between 

the DUV wavelength lines we here make some remarks for the cautious operation of these shifts. 

There are two main steps to change the UV lines: 

1． Optimize the visible power at the selected wavelength. 

The wavelength selection can be performed by adjusting the rear mirror M1 in horizontal direction as 

shown on Fig. 2.21 (a). On the rear of laser head we can see the corresponding screw, denoted with 

“HORIZONTAL & WAVELENGTH”, as shown on Fig. 2.21. There is no indicator to show the running 
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wavelength. However the wavelengths can be practically distinguished by the relative position (rotation 

angle) of the screw and the power level (in % of the strongest line of 514.5 nm), as shown in table 2.7.  

The “VERTICAL” screw is used for adjusting the vertical direction of M1 for the power optimization. It 

should be noted that the horizontal screw should be on the optimal position first: Never try to adjust the 

vertical screw when there is no output laser light.  

 
Fig. 2.21: View of the rear of the laser head. 

 

Table 2.7: Output power and relative position of the horizontal screw for wavelength adjustments.  

Wavelength 
(nm) 

The output Power @ 30A 
(W) 

Relative position of the 
Horizontal screw (degrees) 

514.532 2.4 CCW 0 

501.716 0.55 CCW 120 

496.507 0.85 CCW 180 

487.986 2.1 CCW 280 

476.486 0.80 CCW 360+60 

472.686 0.35 CCW 360+100 

465.789 0.2 CCW 360+190 

457.935 0.3 CCW 360+300 

454.505 0.2 CCW 360+360 

CCW: Counter-Clock-Wise 

Note: The power was measured without optimizing the vertical knob 

 

2． Replacing the corresponding BBO crystal in the laser cavity 

The BBO crystal is mounted on a platform. It allows adjusting the horizontal and vertical direction from the 

top of the platform, as shown in Fig. 2.22 a). The height of crystal is also adjustable from the top via a 

setting screw in the middle of the platform.   
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Before installing the BBO crystal in the laser cavity, one should make sure that there is no dust staying on 

the surface of the crystal. Since the laser will be highly focussed on the BBO, with a radius 𝑤0 ≈ 0.02 𝑚𝑚  

and the intracavity power can reach hundreds of Watts, it results in above 105 W/mm2 of power density in 

the laser beam. It will burn or vaporize any dust therefore damage is done to the coating. Although the 

beam radius is only 0.02 mm, when we adjust the mirrors or the crystal to optimize the lasing, the laser 

beam is moving around on the surface of the crystal, so no dust particles can escape to be burnt.  

Fig. 2.23 shows the laser beam path and the position of the optical components. When the BBO crystal is 

ready for being installed, one should pay attention to the location of the M2, and to avoid touching the 

BBO crystal during the installation. Finally one should make sure that the wires do not block the laser beam. 

 

Fig. 2.22: the view of the BBO crystal platform. 

 

 

Fig. 2.23: The laser beam path and the location of the optical components in the laser head. 
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3    DUV Raman system 

 

A DUV Raman system is a Raman system that is able to perform the measurement of a Raman spectrum 

excited by the DUV light sources. Compared with a traditional Raman system working in the range of visible 

or near Infrared, the DUV Raman system have more stringent conditions for the optical components. In this 

chapter, the various DUV optical components will be described, with particular focus on the quality of the 

measurements. This naturally involves themes such as spectral resolution, sensitivity, eliminating 

background noise and so on.  

On the other hand, operating convenience should be considered because a Raman system for scientific 

research applications is necessary (or at least it is an advantage) to have several different excitation lines, 

even including some visible lines. An intracavity frequency doubled Argon-ion laser (Lexel 95-SHG-QS) has 

been adopted as the DUV excitation laser (described in chapter 2). We have chosen three prime DUV laser 

lines, 257.3, 244 and 228.9 nm, which are relative strong lines and cover the broadest DUV wavelength 

range of the frequency doubled Argon laser. There are two advantages of choosing these DUV lines. Firstly, 

some kinds of samples still have fluorescence for 257.3 and 244 nm excitation [3.1], making it necessary to 

provide an even deeper wavelength, 228.9 nm, to avoid the fluorescence interference. Secondly, these 

three lines also provide more opportunity to study possible resonance Raman effects [3.2].  When including 

the two visible lines, 514.5 and 488 nm, the system in total comprise to work with 5 excitation lines. 

Therefore it is important to set up a practical layout that will save time when switching different excitation 

wavelengths.  

Furthermore, it is important to consider the laser safety because DUV light is a potentially extremely 

dangerous kind of invisible radiation. 

 

3.1 DUV Optical Components 

3.1.1 Gratings 

For a grating based spectrometer the quality of the grating affects almost all the parameters of the 

spectrometer, such as the measurement sensitivity, the background noise and the spectral resolution. The 

effect on the measurement sensitivity is caused by the diffractive efficiency of the grating because the 

diffraction efficiency affects directly the signal intensity. Normally, the spectrometer only utilizes the first 

order diffracted light. In order to optimize this first order diffraction light, an optimum blazed grating is the 

best choice. A blazed grating can provide 100% efficiency at first order diffraction for certain wavelengths 

at a certain incident angle, at least theoretically [3.3].  This optimized wavelength is so-called blazed 

wavelength. Around the blazed wavelength, a relatively high efficiency can be achieved. Fig. 3.1 shows the 

efficiency curve of a typical blazed grating, produced by the leading company HORIBA Jobin Yvon and 

blazed at 290 nm [w3-1]. The blazed wavelength of a DUV grating should optimally be chosen not too far from 

the range where the DUV Raman signals are to be excited. 
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 Fig. 3.1: The efficiency curve of a typical blazed grating produced by HORIBA-Jobin-Yvon 

(blazed at 290 nm). In TE (transverse-electric) polarization, also called S-polarization, the polarization of 

electric field is perpendicular to the plane of incidence (the same plane as the incident ray, the surface 

normal and the reflected ray); In TM (transverse-magnetic) polarization, also called P-polarization, the 

electric field is linearly polarized in the plane of incidence. [w3-2]  

With respect to the spectral resolution, when comparing visible Raman spectra with the DUV Raman 

spectra the tendency is in DUV to have low spectral resolution (broad bands) because the spectral 

resolution is proportional to the square of the absolute wavenumber of the Raman signal [3.4].  The grating 

groove density is one of the main parameters dominating the spectral resolution of a spectrometer 

because the resolution is inversely proportional to the groove density of the grating [3.4]. Therefore, for an 

optimal DUV Raman spectrometer, the grating is required to have a groove density as high as possible to 

achieve the best (narrow) spectral resolution. However groove densities higher than 3600 groove/mm is 

rarely found on the commercial market.  

There are two typical methods to manufacture grating grooves, the diamond ruling or the holographic 

recording. The diamond ruling is a purely mechanical method. Oppositely, the holographic recording 

produces the grooves by recording the pattern from the interference between two laser beams on a 

photoresist layer. The holographic recording method can completely eliminate any periodic errors of the 

grooves that – if occurring – may cause the strange diffraction behaviours, so-called ghosts. The overall 

quality of the holographic grating surface is such that imperfections and roughness are considerably less 

than those found in mechanical ruled gratings. This is important to reducing stray light, because the Raman 

spectra in general are quite weak. Regarding the background noise of the Raman spectrum, it is important 

to avoid as much stray light from the grating as possible because it directly increases the background noise. 

This stray light is depicted on the CCD as shown on Fig. 3.7.    

Practically speaking, the diffraction efficiency depends on not only the micro structure of grating grooves 

but also on the surface reflectance. For the DUV application, the best material of the surface reflector is 

aluminium with a protective coating. 
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3.1.2 Mirrors 

There are mainly three kinds of different mirrors in the Raman system. One is used for the transportation of 

the laser line, such as mirrors M1, M2 and M3 in Fig. 3.7; the second is used for the transportation of the 

Raman signal, such as the double Triangular mirror; the third is dichroic mirrors (a primary filter) as shown 

on Fig. 3.7. The former two kinds of mirrors are required to have as high as possible a reflectance to reduce 

the optical losses during the beam transportation. The third kind of mirrors is required to have high 

reflectance for the laser line. At the same time, it should be transparent for the Raman signal.  Actually, this 

kind of mirror plays a role as a laser line filter, because it also acts to reflect the return laser line from 

sample, thus being a so-called primary filter. The polarization of the return laser line can however be 

different from the input laser line. Since the reflectance of this partly transparent mirror is polarization 

dependent, it may be unable to reflect the entire retuned laser line. Therefore, a further filter is necessary 

to make the spectrometer work, as shown in Fig. 3.7. 

These various functions of the above mirrors are implemented by the various optical coatings. These high 

reflective coatings mainly consist of three types: metallic, dielectric and enhanced metallic mirrors. 

The metallic mirrors are typically made by depositing a thin layer of metal on a glass or other optical 

substrate material. The metals are commonly aluminium, silver and gold. The metal used determines the 

reflection characteristics of the mirror; an aluminium coating yields a reflectivity of around 88%-92% from 

DUV to infrared (200 nm - 5 µm) as shown in Fig. 3.2. Silver has a reflectivity of 95%-99% long into the far 

infrared, but suffers from decreasing reflectivity (<90%) in the blue and UV spectral regions. Gold gives 

excellent (98%-99%) reflectivity throughout the infrared (better than silver), but limited reflectivity at 

wavelengths shorter than 550 nm, resulting in the typical gold colour. Therefore silver and gold are not 

suitable for DUV coatings, and aluminium is to be preferred.  

 
 Fig. 3.2: Reflectance vs. wavelength curves for aluminium (Al), silver (Ag), and gold (Au) 

metal mirrors at normal incidence.  

The dielectric mirrors are made by depositing a series of lays having a different refractive index to the 

substrate. These thin layers are constructed from materials such as magnesium fluoride, calcium fluoride, 

and various metal oxides. By careful choice of the exact composition, thickness, and number of these layers, 

it is possible to tailor the reflectivity and transitivity of the coating to produce almost any desired 



3.1 DUV Optical Components   
 

54 
 

characteristic. When illuminated the reflective waves from the many boundaries of the layers result in 

constructive or destructive interference depending on the wavelength. The reflection coefficients of the 

surfaces can e.g. be reduced to less than 0.2%, producing an antireflection (AR) coating. Conversely, the 

reflectivity can be increased to greater than 99.99%, producing a high-reflector (HR) coating. The level of 

reflectivity can also be tuned to any particular value, over some range of wavelengths. Alternatively, the 

coating can be designed such that the mirror reflects light only in a narrow band of wavelengths, producing 

an optical filter [3.5]. For such a dichoric mirror working in DUV, the substrate should be transparent, such as 

is extremely pure fused silica.  

The functionality of a dielectric coating is usually sensitive to wavelength, incident angle, and polarization. 

A great number of layers are required to achieve high reflectivity. This is increasing the price. Often applied 

dielectrics have a few layers on the top of a metal film, and such devices can achieve higher reflectance 

than the simple metal film. The reflectance is then not so sensitive to wavelength, incident angle, and 

polarization. Since the dielectric layer increases the reflectance and also provide a protection layer to the 

metal layer, such items are often called enhanced mirrors, or sometimes protected mirrors (for single 

dielectric layer). 

With their low sensitivity to wavelength, incident angle and polarization, the enhanced mirror is highly 

suitable for the Raman signal transport. Since the HR dielectric mirrors are excellently working also for laser 

line (in such a case called laser mirrors), we have chosen to use the HR dielectric mirrors for laser lines 

transport, but it must be remembered that such mirrors - being optimized for certain wavelengths - are not 

suitable for transport of the Raman signal. 

 

3.1.3 Filters 

Normally, the Rayleigh scattering is much stronger than the Raman scattering. When no filter is applied, the 

Rayleigh light can easily saturate the CCD array and totally swamp out the Raman spectrum. The excessive 

saturation can spread to the whole CCD by so-called CCD-crosstalk, and even damage may be done to the 

CCD. In this way, the strong Rayleigh light can affect the whole spectrum.  Even if one records the spectrum 

in a range far away from laser line, the recording may hence be spoiled by the stray light. Thus, this strong 

background noise should be avoided. This on the other hand, requires a filter that has a certain shape of 

transmission curve to obtain filtering of the Rayleigh light but not the low frequency shift Raman signal. The 

normal absorptive type filter cannot satisfy such condition therefore. 

For the application to Raman instrumentation, mainly three types of filters are used as below: 

1. Dielectric filters. These filters are actually the dichroic dielectric mirrors as mentioned above. They 

can be edge or notch type filters depending on the design.  

 

2. Holographic filters. These filters are also having layers structure. The optical principle of these 

filters is similar to that of dielectric filters, i.e. selective reflection of various wavelengths 

implemented by optical wave interference from various layers. The main difference is that the layer 

structure of a holographic filter is obtained by recording the interference pattern of two collimated 
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ultraviolet laser beams (such as 312 nm) on a photosensitive glass [3.6], [3.7]. The filter is called 

“holographic” because of the method of producing it (two laser beams interfering to generate the 

layer structure). Thus the spacing of each layer is exactly equal, resulting only one wavelength to 

have total reflectance like in a Bragg grating. Therefore, holographic filters can only perform a 

single line type of filtering (notch type filter). The photosensitive glass is sensitive for short 

wavelengths. The layered structure of the holographic filter is made by exposure of two UV lasers 

beam interference. The finished products of holographic filters are still photosensitive for UV 

exposure. The layered structure can be wiped off if the filter was working continually in an UV 

environment. Therefore the holographic filters are not available for the UV range. Compare to the 

dielectric filter, in which the layers are made by CVD (Chemical Vapour Deposition), for holographic 

filters it is easy to achieve a great number of layers that give a sharper edge in the transmission 

curve.  

 

3. Double monochromator filters. A double monochromator filter is a quite large object composed of 

two monochromators with their mechanical systems operating in tandem. The first 

monochromator disperses scattered light - collected from a testing Raman sample and sent in 

through a quite narrow entrance slit - and then separates most of the Rayleigh light spatially from 

the Raman light, sending it e.g. to the right of the quite open intermediate slit. The second 

monochromator is arranged inversely to the first monochromator. The certain range of the Raman 

spectrum, passing the intermediate slit, is thereby concentrated at the quite narrow exit slit, then 

filtering off the light outside the spectral range determined by the intermediate slit.  As defined by 

the intermediate slit width these filters are flexible and wavelength tuneable.  

 

3.1.4 Lenses 

For DUV Raman applications, firstly, the medium of the lenses should be highly transparent for the DUV 

light. Even then the lens can induce a background signal from the lens material, especially for the objective 

because here much light of the strong laser beam is passing. Use a reflective objective (a Cassegrain type 

objective) instead of traditional refraction type objective can eliminate such background signal. Secondly, 

the lenses - if used - should have a broadband DUV AR coating. Without such a coating each surface of lens 

would have about 4% of reflectance losses. Therefore a one lens alone will induce about 8 % loss in 

intensity passing once and light has to pass forth and back. In addition to this problem, reflection from the 

lenses may also add to the stray light.   

 

3.1.5 CCD 

Today charge-coupled device (CCD) detectors are commonly known from photographic cameras and 

mobile phones. Such typical silicon-based gate devices are unresponsive to UV light because of the high 

absorption of the UV radiation in the polysilicon gate material, which leads to a short penetration depth. 

Most of the radiation is simply absorbed in the gate material rather than entering within the channels of 
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the CCD [3.8]. Because of this absorption there has been efforts to reduce the thickness of the silicon 

material, and illumination from the front (side of the electronics circuits) or from the back of the material. 

Fig. 3.3 shows typical front-illuminated and back-illuminated CCDs. The gates are made of very thin 

polysilicon, being reasonably transparent at long wavelengths, but becoming opaque at wavelengths 

shorter than say 400 nm. Thus, at shorter wavelengths, the gate structure attenuates most of the incoming 

light. 

A useful technique solving the absorption problem is to use a lumogen (light-emitting) phosphor coating to 

convert the UV radiation to visible. This improves the sensitivity of the CCDs in the blue-visible and 

ultraviolet (UV) wavelength ranges. Fig. 3.4 shows the improved UV sensitivity a e.g. a phosphor-coated UV 

CCD from Alphalas. 

It is worth to note, however, that one has a common problem with such lumogen coatings. They exhibit a 

steady drop in sensitivity with the accumulated UV exposure. Furthermore, the lifetime of the CCD will 

depend on the ageing of the phosphor coating. 

The other solution is the use of a back-illuminated CCD. By using acid-etching techniques from the back of 

the side with the electronics, it is possible to uniformly thin a CCD to a thickness of approximately 10 μm. 

This is possible because there is no gate structure on the backside of the CCD as shown in Fig. 3.3 (b).  

When the incoming light is illuminating the backside of the thinned CCD a high sensitivity to light is 

obtained, ranging from the soft X-ray to the near-infrared regions of the spectrum. 

 
 Fig. 3.3: (a) Front Illuminated CCD; (b) Backside Illuminated CCD. [w3-3] 
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 Fig. 3.4: The spectral sensitivity curves of the front illuminated CCD, with and without 
phosphor coating. [w3-4] 
 

        

3.1.6 Prism Pre-Monochromator    

In many cases, the DUV light sources are obtained by using frequency conversion from visible or infrared 

light. The output DUV light often contains the fundamental wave, more or less. For the pulsed laser 

frequency conversions, the output beam contains normally a remarkable amount of the fundamental wave, 

as shown in Fig. 2.14.  As an optical dispersion element, a prism is used to separate the frequency 

converted beam from the fundamental beam. For the CW laser, the intensity of fundamental wave is 

present in the output beam in relatively low amount because the end mirror of laser cavity is highly 

reflective for the fundamental wave, as shown in Fig. 2.14. The fundamental wave itself has such a low 

wavenumber that it does not appear in the Raman spectrum (within the range of 4000 cm-1, at least). 

However the fundamental light can pass directly through the filters (see Fig. 3.7) and thus may increase the 

background noise. Therefore, it is necessary to use prism to eliminate the fundamental wave even for the 

case of a CW DUV laser source. 

For the linearly polarized laser beam, it is possible to design a prism which satisfies the Brewster incidence 

angle for both the input and the output beam, as shown in Fig. 3.5 (a), thus to minimize the power losses of 

the reflective beam from the facets of prism. On the other hand it reduces the DUV exposure of the 

operator because it is difficult to block the internal reflective beam. 

The Brewster angle (the special angle maximizing penetration of the light into the medium) depends on the 

refractive index of the medium. For the fused silica prism, the dispersion equation is shown below: 

 𝑛 𝜆 =  
0.6961663 ·𝜆2

𝜆2− 0.0684043  2 +
0.4079426 ·𝜆2

𝜆2− 0.1162414  2 +
0.8974794 ·𝜆2

𝜆2− 9.896161 2 − 1 

1

2
                 ------ (3.1) 

Here, λ is the wavelength in micrometer and n is the refractive index. The expression is valid in the suitable 

wavelength range of 0.21 – 3.71 µm [3.9]. 
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The Brewster angle is defined by  

 𝜃𝐵 = arctan 𝑛                                                                                                        ------ (3.2)     

and the diffractive angle ѲB’ is [3.10] 

 𝜃𝐵′ = 90𝑜 − 𝜃𝐵                                                                                                        ------ (3.3)                                  

For the triangular prism, when both facets are satisfying the Brewster’s angle incidence as shown in Fig. 3.5 

(a), the apex angle (the top angle) ѲT can be found: 

 𝜃𝑇 = 180𝑜 − 2 · 𝜃𝐵                                                                                                ------ (3.4)                                   

According to the data curve of the refractive index and equations (3.1) and (3.2) it is possible to present at 

plot of the Brewster angle versus wavelength, as shown in Fig. 3.6 (a). For the DUV light (in the range of 

0.21 - 0.30 µm), the refractive index 𝑛  and the Brewster angle 𝜃𝐵  are in the range of 

 𝑛 ∈  1.53836, 1.48779    

 𝜃𝐵 ∈  56.9744o , 56.0935o   

According to equation (3.4) the apex angle range of the prism therefore is 

 𝜃𝑇 ∈  66.0514𝑜 , 67.813𝑜   

 
 Fig. 3.5: (a) The schematics of the laser beam path in a triangular premonochromator prism; 

the apex angle ѲT is defined when both input and output beams satisfy the Brewster angle; (b) The 

geometry of a Pellin Broca prism and the schematics of the laser beam path; the dispersion ability of the 

Pellin Broca prism is in principle closely equivalent to a triangular prism, but it is smarter because it forms a 

90o deviated angle between the input and output beam.    
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 Fig. 3.6: (a) The curves of the refractive index (black) and the Brewster angle (red) versus 

wavelength in fused silicon. (b) The green and blue curves represent respectively the apex angle of a 

triangular prism and the ѲL angle of a Pellin Broca prism versus wavelength under the condition of Brewster 

angle incidence. [Appendix 1] 

 

3.1.6.1 Pellin Broca prism 

The triangle prism may cause an inconvenient layout of the optical path because the incident beam and the 

dispersion beam form an “irregular” angle of about 134o as shown on Fig. 3.5 (a). The Pellin Broca prism 

was developed for solving this problem.  

The main feature of a Pellin Broca prism is the 90o angle between the input beam and the output. The solid 

shape structure of the original Pellin Broca prism is shown in the Fig. 3.5 (b). The prism consists of a four-

sided block of glass, shaped as a right prism with 90°, 75°, 135°, and 60° angles on the end faces. Light 

enters the prism through the face ML, undergoes total internal reflection from the face LK, and exits 

through the face NM. The refraction of the light as it enters and exits the prism is such that one particular 

wavelength of the light is deviated by exactly 90° [3.11]. The angle ∠𝐾𝑁𝑀 does not affect the actual beam 

path. Therefore ∠𝐾𝑁𝑀 can also be the (convenient) 90o for as given by the dashed shape shown in Fig. 3.5 

(b). With respect to dispersion ability, it is equivalent to a triangle prism (dotted shape) with a 60o apex 

angle, as shown in Fig. 3.5 (b) [3.12]. 

For the original Pellin Broca prism, the condition for occurrence of the 90o deflection angle is only that the 

refractive angle of the input beam is 

  𝜃𝐵′ = 𝜃𝐿 − 45𝑜 = 30𝑜                                                                                                ------ (3.5)                                   

according to the Brewster angle refraction condition. 

Therefore the essential condition for a Brewster angle input is that the refractive index of the prism is  

 𝑛 = 𝑡𝑎𝑛[60𝑜] = 1.732                                                                                                ------ (3.6)  

The refractive index of fused silica cannot satisfy this condition as Fig. 3.6 (a) shows. In order to realize the 

Brewster angle input and output the angle ѲL must be modified. 

If we substitute equation (3.3) into (3.4), the angle ѲL required for Brewster incidence can be found: 
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 𝜃𝐿 = 180𝑜 − 45𝑜 − 𝜃𝐵                                                                                                ------ (3.7) 

Fig. 3.6 (b) shows the results as: 

 𝜃𝐿 ∈  78.0256𝑜 , 78.9065𝑜    

The optical company Thorlabs has a standard Pellin Broca prism product of with an angle of ѲL = 78o26’ that 

would be satisfactory for our application [w3-5].  

 

3.2 Transport of Laser Beams from the Laser Head to the Spectrometer. 

Our DUV Raman system is composed two main sections, a Lexel 95-SHG-QS Argon gas ion laser from 

Cambridge Laser Laboratories Inc. (USA) and an InVia Reflex spectrometer system for Raman spectral 

analysis from Renishaw, plc. (UK). As previously introduced, we have adopted 2 visible and 3 DUV laser lines, 

514.5, 488.0, 257.3, 244.0 and 228.9 nm, which are exported from visible and DUV laser output apertures, 

respectively. Correspondingly, the spectrometer must have two access ports. The spectrometer is very 

sensitive for the pointing of the incoming laser beam (including position and direction). Furthermore, the 

pointing of the laser beam can be changed slightly during switching the wavelengths, especially for the DUV 

laser beams. As shown in Fig. 2.21 (A), when we were optimizing the position of M2, the direction of the 

laser beam is actually changing. The laser beam can also be changed slightly when inserting of different 

BBO crystals. Furthermore the prism disperses the different wavelengths to the different directions, and 

therefore the beam paths for the various DUV lines are slightly different. Therefore, it is required that the 

laser beams can be adjusted quite freely to let them go through the pinhole pairs as shown in Fig. 3.7. The 

pinhole pairs are used to fix the position and direction of the incoming beam to a good way for 

spectrometer.  

For a convenient alignment, the laser beam path is normally set to have two 90o deflections by two 45o 

incident laser line mirrors; see the green beam path in the front of the laser head, shown in Fig. 3.7. The 

mirrors are mounted on kinematic mirror mounts (Thorlabs products: KM100). We have chosen broad band 

high reflective dielectric visible and DUV laser mirrors, respectively (Thorlabs products, BB1-E02 and NB1-

J02). These mirrors provide above 99% reflectance at 45o incidence.  

Compared with visible and DUV laser beams, the situation for the DUV laser is complicated because a prism 

is needed to be inserted in the laser beam path to remove the fundamental wave and  non-lasing plasma 

lines from the argon gas. The violet lines in the front of the laser head (see Fig. 3.7) show the laser beam 

path when a triangular prism is used. In such a geometry layout, the three mirrors, M1, M2 and M3, can 

bear equal shares of the irregular deflection angle (about 134o shown on Fig. 3.5 (a)) that is associated with 

the use of the triangular prism, resulting in the about 52.3o angle incidence for each of the mirrors: 

∠M1 + ∠M2 + ∠M3 ≡ 180𝑜 + 134𝑜        
∠𝑀1=∠𝑀2=∠𝑀3
                     

∠𝑀1

2
≈ 52.3𝑜   
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Here, ∠M1,∠M2 and ∠M3 are the angles between the incidence and reflectance beams for each mirror, 

respectively. 

Using such a beam path is convenient because the reflectance of the mirrors is as close as possible to the 

optimum incident angle of 45o typical for the high reflectance dielectric mirrors.  

If a Pellin Broca prism is used instead of the normal triangle prism, the laser beam path becomes simple 

because of the 90o deflection of the Pellin Broca prism, as shown in Fig. 3.7 in the dashed frame. In such a 

beam setup we suggest that the position of Pellin Broca prism should be on the upper corner of the beam 

path, because otherwise, it is difficult to control respectively the position and direction of the laser beam 

during adjusting of the Pellin Broca prism. When the Pellin Broca prism is on the upper corner, it just needs 

to be responsible for the beam position on the mirror M3’ which should be on the extension line of the 

pinhole pair. The tilt of the mirror M3’ is then responsible for the final adjusting of the beam direction to go 

through the pair of pinholes.    

 

Fig. 3.7: The optical layout of the Raman system for DUV and Visible excitation. 
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Fig. 3.8: View of the laser beam transport system from the laser head to the spectrometer. 

 

3.3 Horizontal Sampling with “Nose” 

Because we use the microscope for the Raman excitation entrance and signal collection, the following two 

cases of measurements could present difficulties and we have to use the method of Horizontal sampling:  

 When it is wished to measure the side face of a sample and it cannot be laid down. 

 When the sample is too large to be placed under the microscope. 

In the first case, the microscope objective can be taken away and a microscope “nose” with a broad band 

high reflective mirror or a right angle prism, as shown in Fig. 3.9 (a), can be fitted to the microscope, to 

realize the horizontal sampling. This works because the light beam is parallel when reaching or leaving the 

objective. The objective is put directly on the “mirror holder” to constitute the “nose”. It can be laterally 

shifted (or turned) by mounting and applying a lengthening tube on the microscope nose, as shown in Fig. 

3.9 (b). This helps for the second case. The principle of the optical layout is depicted in Fig. 3.10, a 

photograph is given in Fig. 3.10  and details of the setup structure are shown in the [Appendix 2].  
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 Fig. 3.9: (a) An additional microscope “nose” can be used to realize horizontal sampling; (b) A 

lengthening tube making a shift of 20 cm of the objective possible. 

 
 Fig. 3.10: The optical layout of the nose mounted on the Raman microscope system. For the 

principles of the rest of complete system, see Fig. 3.7. 

 
 Fig. 3.11: Photograph of the nose mounted on the Raman microscope system. 
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4     Determining the Spectral Resolution of Raman Instruments  

 

4.1 Introduction:  

The wavelength of the light sources used for excitation in modern dispersive Raman spectroscopy most 

often lies in the range from ~800 nm down to nearly 200 nm. The use of deep ultraviolet (DUV) radiation - 

in the range below 300 nm - although used occasionally - is a newly rising technology. DUV Raman 

spectroscopy has a significant advantage, avoiding the common interference from a high fluorescence 

background, as discovered long time ago [4.1]. There are however also disadvantages by using UV excitation, 

such as the need for extra security precautions, the non-transparency of glassy containments and often 

decomposition of the tested samples [4.2], [4.3]. Traditional visible light Raman spectroscopy therefore still 

plays an important role, first of all because its operation is easier than for DUV Raman, and secondly 

because some samples have interesting resonance Raman spectra in the visible range [4.4]. Therefore, a 

scientific research type Raman set-up usually requires flexible instruments and several different light 

sources with various wavelengths for excitation.  

In such an environment it is important to maintain an even and high spectral resolution, when switching 

between Raman instruments, changing the setup or comparing results from different instruments. It is well 

known that the spectral resolution of a Raman system is affected by many factors, such as grating groove 

density, entrance slit width, focal length, and so on. In order to estimate and optimize the spectral 

resolution of an instrument, one must consider all the factors which affect the system resolution. In this 

chapter we attempt to combine all the influencing factors into one single expression. Such an expression 

has the advantage that it clearly shows the dependence of the spectral resolution on the situation of the 

Raman system under different conditions. As it will be shown, the expression shows that the spectral 

resolution exhibits a significant change along the Raman shift axis. This behavior, although known for long 

time, is being constantly overlooked in many contemporary Raman publications.   

With respect to applications in some research areas, knowledge of the precise width of a Raman band is 

important to characterize the structure of materials. For example the properties and behavior of single 

layer graphite (graphene) can be determined by using a Raman technology, in which the width and the 

position of certain characteristic Raman bands may be used as criteria [4.5]. In another case, the width of a 

Raman band could be used to infer the size of germanium nanocrystals [4.6]. In such studies one should 

remember that the spectral resolution resulting from the applied experimental setup affects directly the 

determined Raman band width. The measurement of a Raman band width should therefore be considered 

as a convolution relation between the true Raman band and the experimental resolution in the situation 
[4.7]. Therefore, one should find the true Raman band width by taking the exact spectral resolution of the 

instrument into consideration. To do this, data for the true experimental resolution must be determined. 

The exact spectral resolution of a Raman instrument is typically determined by using a light source with a 

narrow-line radiation, such as a low-pressure mercury lamp [4.8], [4.9], or a sample which has a well-defined 

narrow Raman band. In this way the spectral resolution is determined for the particular wavelength(s) or at 
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the corresponding Raman shift(s). Since the spectral resolution is not constant but depends on the 

wavelength, one needs a well-defined expression to predict (by interpolation or extrapolation) the spectral 

resolution at positions where the important Raman bands are located, as a prerequisite to finally determine 

the true Raman band width. 

A new method is described to express the spectral resolution of an applied CCD Czerny-Turner Raman 

instrument entirely by means of one equation and principal factors determined by the actual setup. The 

factors are usual quantities such as wavenumber values for the laser and the Raman band (ωL and ωR), the 

diffraction grating groove density (G), the second focal length (f2), the angle between the incident and the 

diffracted light (α) and the full width at half maximum (FWHM) value of the signal on the detector (bimg). 

The basic formula derived to estimate the spectral resolution (Δω function) of the Raman instrument is 

given as 

     Δ𝜔 𝜔𝐿 ,𝜔𝑅 ,𝐺,𝑓2 ,𝛼, 𝑏𝑖𝑚𝑔  =  𝜔𝐿 −𝜔𝑅 
2 ∙

𝑏𝑖𝑚𝑔

𝐺∙𝑓2
∙ cos arcsin 

𝐺

2∙ 𝜔𝐿−𝜔𝑅 ∙cos   
𝛼

2
 
 +

𝛼

2
  

This validity of this expression has been examined by measuring the band width of the 1332.4 cm-1 

diamond Raman fundamental band, excited with two quite different wavelengths (deep ultraviolet 257.3 

nm and visible green 514.5 nm light). Further use of a low pressure mercury line at 265.2042 nm also gave 

verification of the given expression. A useful method to find true Raman band widths is provided. The 

relation between the practical spectral resolution and the true band width is based on a Gaussian band 

shape approximation. An essential feature of the new method is a proposed way to compensate for non-

ideality (slit diffractions, aberrations, etc.) by use of a hyperbola model function  

𝑏𝑖𝑚𝑔 = 𝑀 ∙   𝑏𝑒𝑛𝑡  
2 +  𝑏𝑙𝑖𝑚𝑖𝑡  

2 

to describe the relationship between bent (the width of the entrance slit) and the image signal width on the 

CCD (bimg). M is the spectrometer magnification, given by the focal length f2 divided by the focal length f1 of 

the first concave mirror. blimit is the smallest possible limiting FWHM of the slit image when M = 1. A final 

finding is that the known significant changes in spectral resolution along the Raman shift axis make static 

recording and synchronous (extended) scanning modes differ significantly with respect to their resolution 

properties; this feature has been often overlooked in many contemporary works reporting Raman spectra.  

 

4.2 Derivation of the Expression  

We will derive the theoretical expression for the spectral resolution of a spectrometer based on the 

common Czerny-Turner monochromator [4.10], [4.11]. The schematics are shown on Fig. 4.1.  Most currently, 

the spectrometer is equipped with a multi-channel charge coupled device detector (CCD) [4.12], replacing 

previous single-channel detectors behind an exit slit. As we shall see this complicates the problem. In the 

following derivation of the expression for the resolution, we are concerned with the central part of the CCD.  



Chapter 4 Determining the Spectral Resolution of Raman Instruments   
 

67 
 

The spectral resolution of a Raman system is affected by many factors. We count up 10 items as shown 

below: 

1.  Exciting laser characterized by the wavelength λL (or the corresponding wavenumber, ωL ).    
2.  Raman wavenumber shift, ωR.   

3.  Diffraction grating groove density, G.  

4.  Angle α between the incident light and the diffracted light.  

5.  Focal length, f.   
6.  Entrance slit width, bent.   

7.  System magnification, M.   

8.  System diffraction effects of grating and concave mirrors (lenses). 

9.  System aberrations. 

10.  Pixels of the CCD.   

Among these many factors related to the spectral resolution of a Raman instrument, the wavelength 

dispersing ability (∆λ/∆Ѳ) of the grating and the full width at half maximum (FWHM) of the slit image of a 

monochromatic light on the CCD are the two key parameters that link up all the factors. Please note that 

resolution is not affected by the diffraction efficiency of the grating (blazing angle etc.) [4.13]. 

The wavelength dispersing ability of the grating, here defined as ∆λ/∆Ѳ, depends on the spacing of the 

grating grooves (d, not shown in Fig. 4.1) and the incident angle (Ѳi). The dispersing ability can be derived 

from the well-known grating relation (eq. 1) as shown below. Ѳ is the diffractive angle, and the order of 

diffraction is set to one (normally the first order is used in Czerny-Turner monochromators to get the most 

effective monochromator): 

 𝑑 ∙  sin 𝜃𝑖 + sin 𝜃  = 𝜆                                                                               ------ (eq. 1) 

By differentiation one gets the relation (eq. 2),  

 
𝜕𝜆

𝜕𝜃
= 𝑑 ∙ cos 𝜃        

Δ𝜆

Δ𝜃
= 𝑑 ∙ cos 𝜃                                                            ------ (eq. 2)        
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 Fig. 4.1: The schematics of a Czerny-Turner monochromator based spectrometer. 

Assuming that monochromatic light, say of wavelength λ, is entering through the entrance slit, then an 

image of the entrance slit (with the physical width, bent and a color corresponding to λ) will be formed on 

the detector (CCD), by means of the concave mirrors (see Fig. 4.1). Because of  diffractions and aberrations, 

the intensity profile of the image is not a rectangle curve any more, but will be a bell-shaped curve, 

corresponding to the signal obtained with a CCD having a sufficiently narrow pixel size (such that at least a 

few pixels are sensing the curve [4.9], [4.14], [4.15]). The FWHM of the bell-shaped curve is denoted as bimg. 

Furthermore to analyze the situation more carefully, the slit image (or signal versus wavelength) due to the 

angular dispersion of the grating, will be depicted differently by e.g. two different wavelengths, say λ and (λ 

+ ∆λ), see Fig. 4.1. When the two images corresponding to different grating diffraction angles, Ѳ and (Ѳ + 

∆Ѳ), are juxtaposed at a distance corresponding to the FWHM, then these two peaks can be considered to 

be just distinguishable (or resolved, see Appendix 3). This criterion of the resolution is more tolerant than 

the usual Rayleigh criterion (see Appendix 3) to distinguish two close images [4.14]. However, normally the 

spectral resolution is dominated by the FWHM. This situation characterizes the resolving power ∆λ of the 

spectrograph. The opening angle ∆Ѳ at the grating (between the rays 1 and 2 in Fig. 4.1) can be seen (by 

geometry, because ray 2 and 3 are parallel) to form at the Concave mirror 2 another angle ∆Ѳ of equal 

magnitude, because rays 1 and 3 are reflected in the same point. From this and the near right angled hitting 

of the image on the slit, it therefore follows that bimg, ∆Ө and the second focal length f2 are related in this 

way: 

 Δ𝜃 =
𝑏𝑖𝑚𝑔

𝑓2
                                                                                                    ------ (eq. 3) 

The ∆Ѳ angle is equal to the grating dispersive angle for these two just distinguishable wavelengths, as seen 

in Fig. 4.1.    
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By substitution of (eq. 3) into (eq. 2), we therefore get the spatial resolution as 

 Δ𝜆 =
𝑏𝑖𝑚𝑔

𝑓2
∙ 𝑑 ∙ cos 𝜃                                                                                  ------ (eq. 4) 

To eliminate Ѳ from this expression we introduce the angle α, between the direction of the incident light 

and the diffracted light, as shown in Fig. 4.1.  

 𝛼 = 𝜃 − 𝜃𝑖                                                                                                      ------ (eq. 5)   

This angle  is normally kept constant for well designed instruments; the condition for this constancy being 

that the grating rotation is done around an axis chosen to be parallel with the grating surface and centrally 

placed. Then we rearrange (eq. 1) from a sum to a product by use of a standard trigonometric formula: 

 𝑑 ∙  sin 𝜃𝑖 + sin 𝜃  = 𝜆         𝑑 ∙  2 ∙ sin  
𝜃+𝜃𝑖

2
 ∙ cos  

𝜃−𝜃𝑖

2
  = 𝜆     ------ (eq. 6)   

By substituting (eq. 5) into (eq. 6), we get the equation: 

 𝑑 ∙  2 ∙ sin  
2𝜃−𝛼

2
 ∙ cos  

𝛼

2
  = 𝜆                                                          ------- (eq. 7) 

Then, solving for Ѳ we have 

 𝜃 = arcsin 
λ

2∙𝑑∙cos  
α

2
 
 +

α

2
                                                                       ------ (eq. 8) 

By substituting (eq. 8) into (eq. 4) we get the expression  

 Δ𝜆 =
𝑏𝑖𝑚𝑔

𝑓2
∙ 𝑑 ∙ cos arcsin 

λ

2∙𝑑∙cos  
α

2
 
 +

α

2
                                        ------ (eq. 9) 

Normally, Raman band absolute positions are expressed as ω in wavenumber units. In order to derive a 

practical expression in wavenumber units, we apply these conversions:  

 𝜔 =
1

𝜆
           

𝜕𝜔

𝜕𝜆
= −

1

𝜆2 

 

Hence, for small absolute values of ∆ω one gets the approximation: 

 Δ𝜔 = 𝜔2 ∙ Δ𝜆 =  𝜔𝐿 −𝜔𝑅 
2 ∙ Δ𝜆                                                      ------ (eq. 10) 

where ω is the Raman scattering absolute wavenumber position, ωL is the laser line absolute wavenumber 

value and ωR is the Stokes wavenumber shift of the scattered light. 
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Instead of specifying the separation between the grating grooves (d, not shown in Fig. 4.1), one often uses 

the density of the grating grooves (number G of grooves per unit length) to classify the grating:  

 𝑑 =
1 

𝐺
                                                                                                               ------- (eq. 11) 

After substitution and unit conversion, the spectral resolution function becomes 

     Δ𝜔 𝜔𝐿 ,𝜔𝑅 ,𝐺,𝑓2 ,𝛼, 𝑏𝑖𝑚𝑔  =  𝜔𝐿 −𝜔𝑅 
2 ∙

𝑏𝑖𝑚𝑔

𝐺∙𝑓2
∙ cos arcsin 

𝐺

2∙ 𝜔𝐿−𝜔𝑅 ∙cos   
𝛼

2
 
 +

𝛼

2
  

                                                                                                                                                     ------- (eq. 12) 

It should be noted, because the unit of wavenumber is usually cm-1, when (eq. 12) is applied for numerical 

calculations, the units of length for all the parameters must be transformed to cm.     

In the above expression, there are six variables; five of these variables correspond to five of the factors 

(items 1-5) that were mentioned in the beginning. The items 6-9 must also have influence on the 

relationship between the widths of the entrance slit (bent) and the image thereof (bimg), thereby affecting 

the spectral resolution. For monochromatic light, the limiting FWHM of the peak of the image is governed 

by the diffraction effects and the aberrations (items 8-9). However, this is not easily expressed and we 

therefore seek an empirical relationship between bimg and bent.  Hence, considering the experimental results 

as shown later, it seems that the spectral resolution (∆ω) versus the width of the entrance slit (bent) looks 

like a hyperbola curve. Furthermore, ∆ω and bimg have a direct proportional relationship. Therefore we 

propose to use a hyperbola function (bent versus bimg) as a model for the relationship between bent and bimg. 

If so, we would have a relationship between bimg and bent of the kind: 

 𝑏𝑖𝑚𝑔 = 𝑀 ∙   𝑏𝑒𝑛𝑡  
2 +  𝑏𝑙𝑖𝑚𝑖𝑡  

2,       where         𝑀 =
𝑓2

𝑓1
                    -------  (eq. 13) 

In this expression, M is the system magnification, defined by the focal length f2 of the second concave 

mirror, divided by focal length f1 of the first concave mirror, (see Fig. 4.1). blimit can be defined as the 

smallest possible limitation FWHM of the slit image when M = 1. The limitation is caused by the system 

diffractions and the aberrations. In practice the system diffractions play a more important role than the 

aberrations. According to the diffraction equation of a grating and a circular aperture [4.13], a reasonably 

approximate expression of blimit would be 

 𝑏𝑙𝑖𝑚𝑖𝑡 = 𝐴 ∙ 𝜆 =
𝐴

 𝜔𝐿−𝜔𝑅 
                                                                          ------ (eq. 14) 

where A is a constant for a spectrometer with a certain setup. Considering that A is depending on the 

system diffractions and aberrations, we denote A as the Diffractions and Aberrations Compensation Factor 

(DACF) of the used spectrometer system.               

To resume the results so far: In the above equations (eq. 12) and (eq. 13), the values of all the factors 

except A can easily be determined for a particular Raman instrumental situation.  
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When the width of the entrance slit bent is broad enough (such as: >100 μm at 500 nm), the effects of 

diffraction and aberration become weak, and therefore we may do the approximation:   

 𝑏𝑖𝑚𝑔 ≈ 𝑀 ∙ 𝑏𝑒𝑛𝑡 ,      𝑏𝑒𝑛𝑡 > 100 μ𝑚                                                      ------   (eq. 15) 

This can become the experimental method to verify if (eq. 12) gives a correct description. In addition, we 

can use a set of measurements to determine A and check if the hyperbola approximation, (eq. 13), is 

indeed a good model. 

Concerning the equation (eq. 12), it is worth noting that the CCD pixel width size, for normally adopted 

Raman instrument layouts, is narrower than the width of common Raman bands. The CCD records the 

spectrum band as a digital profile from several pixels. The digital profile of the spectrum band will 

constitute a not very smooth curve, at least when the widths of the CCD pixels and the spectrum band are 

comparable (see later). The FWHM of a not very smooth curve has a deviation from the true FWHM of the 

spectrum band, hence affecting the spectral resolution of a spectrometer. This is one reason why the 

theoretical curves – as we shall see – do not fit well with the experimental curves in the range of narrowly 

opened slits (bent < 20 µm).  

In practice the spectrum band not only is broadened by the limited resolution of the spectrometer, but also 

by the line width of the exciting laser. In general the FWHM of the spectrum band will be determined by 

the convolution of these two causes of broadening. Assuming a Gaussian line profile, an approximation of 

the FWHM can be provided by this relationship (see Appendix 4): 

 Δ𝜔𝑀 =   Δ𝜔𝑅 
2 +  Δ𝜔S 

2 +  Δ𝜔𝐿 
2                                               ------   (eq. 16)

 
Here ΔωM is the measured spectrum bandwidth, ΔωR is the true Raman spectrum bandwidth, ΔωS is the 

spectral resolution of the spectrometer and ΔωL is the linewidth of the excited laser. 

This equation (eq. 16) is an interesting result. As the laser line width, ΔωL, is typically known (e.g. given by 

manufacturer), and ΔωM is the experimental value, we can calculate the spectral resolution ΔωS of the 

spectrometer if the true Raman bandwidth, ΔωR, is also known. On one hand, this is an experimental 

method to find the spectral resolution of the spectrometer at a certain absolute wavenumber. To do this 

the Spectral Resolution Compensation Factor A, or the DACF parameter, can be determined by the 

equations (eq. 12), (eq. 13), and (eq. 14), and then the spectral resolution of the spectrometer in the whole 

wavenumber range can be determined. On the other hand, we can use (eq. 16) to determine the true 

Raman bandwidth for the testing sample, as soon as the spectral resolution is totally known.   
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4.3 Experiments  

 Samples 

A monocrystalline diamond that did not emit fluorescence was used. Diamond has a characteristic strong 

Raman band, located at 1332.4 cm-1, that was acting as a suitable narrow line source. The band width of the 

diamond line is known to be ∆ωR = 1.2 cm-1 [4.16]. Another useful source was a low pressure Hg(Ar) pencil 

style calibration lamp from Oriel Instruments. 

 Instrumentation  

As exciting light source we used a Lexel 95-SHG-QS Argon gas ion laser (from Cambridge Laser Laboratories, 

Inc.) working in direct or second harmonic generation (SHG) mode. The wavelengths and powers applied 

were 514.5 nm (10 mW) and 257.3 nm (1 mW).  The linewidth ∆ωL for the 514.5 nm line was 0.17 cm-1. 

Since the 257.3 nm line is generated from the 514.5 nm line, the width should be narrower but we have 

also taken the value 0.17 cm-1 as approximation for the 257.3 nm line width. 

A flexible InVia Reflex Raman spectrometer system from Renishaw, plc. was used to record the spectra. The 

schematics of the couplings of the visible and ultraviolet laser beams into the spectrometer and other 

details of the system are shown in Fig. 4.2. The optical principle of the Renishaw spectrometer is equivalent 

to a single classical Czerny-Turner monochromator. Instead of concave mirrors, mirrors combined with 

lenses are used in the Renishaw system. Compared to the concave mirrors, lenses have the well-known 

problem of chromatic aberrations, and even for achromatic lenses it is not possible to cover the whole 

range from UV to the visible; therefore the lenses have (like the grating) to be exchanged in order to suit 

the whole range of wavelengths from UV to visible. The details of the experiments are shown in Table 5.1. 

Table 4.1: Experimental details. 

Exciting wavelength 
(nm) 

Grating groove 
density 

G (mm-1) 

Diffraction angle 
α 

(deg) 

Focal length 
f1 

(mm) 

Focal length 
f2 

(mm) 

514.5 2400 37 140 250 

257.3 3600 37 155 250 

 

 Fig. 4.2: Schematics of the monochromator based on the Renishaw spectrometer. 
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4.3.1 Examination of the Expression of Spectral Resolution, Equation (eq. 12) 

As noted above, when the width of the entrance slit (bent) is broad enough, the effects of diffraction and 

aberrations can be ignored, and therefore the spectral resolution can be calculated theoretically by (eq. 12).  

After that, one can compare with the experimental results to examine if equation (eq. 12) is correct. We 

take bent = 140 μm as the condition for a broad slit-width experiment. For this slit width, measurements of 

the Raman band widths of diamond are shown in Table 4.2. After applying the values of ∆ωM to (eq. 16), 

the experimental results found for the spectral resolution ∆ωS are shown in Table 4.2. The theoretical 

results of spectral resolution ∆ω are also shown, calculated by equations (eq. 12) and (eq. 13).   

Table 4.2: Comparison of the experimental and theoretical results for the spectral resolution for a wide 

entrance slit, bent = 140 μm. [Appendix 6]   

Exciting  
wavelength  

λ  
(nm) 

The measurements of 
Raman bandwidth ∆ωM  

(cm-1) 

Experimental results of 
spectral resolution ∆ωS  

(cm-1) 

Theoretical results of 
spectral resolution ∆ω  

(cm-1) 

514.5 6.77 6.66 6.23 

257.3 23.80 23.77 23.24 

 
As shown in the Table 4.2, there is a good correspondence between experimental results (∆ωS) and the 
theoretical results (∆ω); only a few percent differences are seen. This is to be expected because we ignored 
the effect of the aberrations, as previously noted. 

 

4.3.1.1 Hyperbola Model for the Spectral Resolutions 

According to (eq. 13), when the width (bent) of the entrance slit decreases, the effect of diffraction and 

aberrations (blimit) becomes of importance. Therefore, these effects cannot be ignored for narrow entrance 

slits. To investigate the situation, the Raman band width (∆ωM) of a diamond sample was measured for 

various entrance slit widths (bent), from 10 µm to 180 µm. The obtained results are shown in Fig. 4.3. In 

order to compare the FWHMs clearly, the Raman spectra were auto-scaled to have same maximum (set to 

unity). The analyses of these results are given in Fig. 4.4. Here, the large green points represent the 

measurements of the Raman band width versus the slit width. From these results we can calculate the 

experimental spectral resolution (the red small points by using (eq. 16).  

If one chooses an appropriate number for the Spectral Resolution Compensation Factor A, and substitute it 

to (eq. 14), then one can plot an estimate of the spectral resolution by use of (eq. 12). The chosen number 

for A can be varied by iteration to find better or worse fits to the experimental red resolution points in Fig. 

4.4. When A = 100, we got the shown approximate model curves (black dotted curves) in Fig. 4.4.   

The experimental results (red curves) were fitted well by the theoretical results (black dotted curves) 

except for narrow slit openings (< 20 μm). One reason is the effect of the CCD spectral resolution. Other 

reasons are that the effects of diffraction and aberrations become more important. As obvious from Fig. 4.3 

the un-smoothed facetted spectrum profiles must be caused by the width of the CCD pixels. One might be 

tempted from Fig. 4.3 to use narrow slits. However, slits as narrow as < 20 μm are not practical for real 

measurements because the Raman signals decrease extremely much when so narrow slits are used (the 
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weakness of the narrow-slit spectra are not obvious from the spectra after setting the auto-scaled intensity 

to unity).      

 

 
 Fig. 4.3: Auto-scaled Raman spectra of the 1332.4 cm-1 band of a diamond obtained by use of 

various slit widths (given in μm) and a) excited with 514.5 nm radiation and b) with 257.3 nm.  
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 Fig. 4.4:  The wide green points are the measurements of Raman bandwidth ΔωM of 

diamond for various slit widths. The narrow red points, connected by red curves, are the experimental 

spectral resolution data Δω obtained by means of (eq. 16). The black dotted curve is the spectral resolution 

modeling results (theoretical spectral resolution) based on the equations (eq. 12), (eq. 13) and (eq. 14).  a) 

The wavelength of the exciting light source was 514.5 nm and A was set to 100.  b) The wavelength of the 

exciting light source was 257.3 nm and A was set to 100.    

 

4.4 How to Choose a Suitable Width of the Entrance Slit 

For a practical Raman spectrum measurement, in order to choose a suitable width of the entrance slit bent, 

one needs to consider both the signal intensity and the spectral resolution. Then, the limitation FWHM of 

the slit image blimit could be used as an importance reference value. According to equations (eq. 13) and (eq. 

14), when  

 𝑏𝑒𝑛𝑡 = 𝑏𝑙𝑖𝑚𝑖𝑡 = 𝐴 · 𝜆                                                                                  ------  (eq. 17) 

we can calculate 

 𝑏𝑖𝑚𝑔 =  2 ·𝑀 · 𝑏𝑙𝑖𝑚𝑖𝑡                        ------  (eq. 18) 

This means that the achieved spectral resolution will be  2 times of the limitation value. 



4.4 How to Choose a Suitable Width of the Entrance Slit   
 

76 
 

Using the obtained value of A, for the visible laser line 514.5 nm, we get 

 𝑏𝑙𝑖𝑚𝑖𝑡 = 𝐴 · 𝜆 = 100 · 514.5 𝑛𝑚 = 51.45 µ𝑚  

and for the DUV laser line 257.3 nm, 

 𝑏𝑙𝑖𝑚𝑖𝑡 = 𝐴 · 𝜆 = 100 · 257.3 𝑛𝑚 = 25.73 µ𝑚.  

For the case of Stokes scattering, the wavelength of the Raman signal is longer than the wavelength of laser 

line. Therefore as a compromise choice, slit widths of about 60 µm for 514.5 nm and about 30 µm for 257.3 

nm are reasonably adopted for practical measurements.  

 

4.5 Dependence of the Spectral Resolution along the Raman Shift  

        Axis 

According to the equation (eq. 12), it is possible to plot the theoretical spectral resolution in the range of 

Raman shifts from 0 to 4000 cm-1, as shown in Fig. 4.5 (green and violet line). Note that the resolution 

changes significantly along the abscissa. Since (eq. 12) predicts the spectral resolution for the central part 

of the CCD, it does not describe the situation for the spectral resolution in an exact way in the Raman 

spectrum recorded by using the whole CCD. In the non-central part of the CCD, the case does not strictly 

satisfy the equation (eq. 5), 𝛼 = 𝜃 − 𝜃𝑖 , but rather an approximate version,  𝛼 ≈ 𝜃 − 𝜃𝑖 . Actually, for a 

static grating measurement, 𝜃𝑖  is a constant (see Fig. 4.1); therefore an expression of the spectral 

resolution, (eq. 12), can be obtained by using 𝜃𝑖  instead of α (see Appendix 5).  The black lines in the Fig. 

4.5 show the variation of the theoretical spectral resolution for series of static measured multi-channel 

spectrograms (static in opposition to so called extended scanning, a feature in the Renishaw spectrometer 

implemented by moving the grating and the charge detected on the CCD camera synchronously [4.17]). 
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 Fig.  4.5:  The observed dependence of the spectral resolution along the Raman shift axis. 
The green and violet lines show the theoretical results calculated by use of (eq. 12) for only the central part 
of the CCD (in extended scanning mode using only few pixels). The black lines show the spectral resolution 
increments in four spectrograms and three spectrograms, for 514.5 nm and 257.3 nm laser excitation, 
respectively, obtained in static mode recordings, using many pixels and settings of the central pixel of the 
CCD at Raman shift wavenumbers of ω0 = 500, 1500, 2500 and 3500 cm-1 for 514.5 nm excitation, and ω0 = 
750, 2250 and 3750 cm-1 for 257.3 nm excitation, respectively. [Appendix 7] 

 

4.6  Experiments with Mercury Lines 

The low pressure mercury lamp emits several narrow lines in the DUV range. Therefore it can be used as a 

wavelength calibration light source for DUV Raman instruments, and furthermore it is well suited for 

determination of the spectral resolution in the DUV range [4.9]. Particularly, there are three close lines with 

wavelengths of 265.2042, 265.3681 and 265.5121 nm in air, or 265.2831, 265.4471 and 265.5911 nm in 

vacuum [4.18] (~0.01 nm larger values have been given in [4.19]).  These narrow lines are corresponding to 

absolute wavenumbers of 37695.57, 37672.29 and 37651.86 cm-1, respectively, and they provide a direct 

view of the resolution capability of DUV Raman instruments. 

These three lines of the low pressure mercury lamp were measured using a spectrometer setup  similar to 

the one used for recording the Raman band of diamond excited with the 257.3 nm laser. The grating was 

set to the value of 265.2042 nm (the line of 37695.57 cm-1) and various openings of the entrance slit were 

applied, as shown in Fig. 4.6.   
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 Fig. 4.6: Auto-scaled intensity of mercury lines at 37695.57, 37672.29 and 37651.86 cm-1, 

obtained by the use of various slit widths (given in μm).  

From these spectra we determined the FWHM values of the lines by means of software in the Renishaw 

WiRE™ 3.0 packet. The principle and the results are shown in Fig. 4.7. Note that a suitable curve resolution 

algorithm is indispensable during the evaluation of the FWHM values of a spectrum band because 

neighboring lines obviously are affecting each other when the lines are close enough, as seen in Fig. 4.7.  

When all the curves in Fig. 4.6 have been curve resolved like for the example in Fig. 4.7, a data set is 

obtained that forms the basis for Fig. 4.8. Here, wide green points depict a plot of the line widths for the 

265.2042 nm mercury line versus the various slit openings. 

From these line widths (ΔωM, the wide green points in Fig. 4.8) the corresponding experimental spectral 

resolutions of the spectrometer (ΔωS, the narrow red points in Fig. 4.8) are obtained, again as in Fig. 4.4 by 

means of the (eq. 16), but now with  ∆𝜔𝐿  =  0  and  ∆𝜔𝑅 ≈  1  cm-1. Here ∆ωR is the natural (or true) line 

width of the mercury line. We consider it to be less than 1 cm-1 but the approximation of 1 suffices because 

it is not an important factor when the spectral resolution is much bigger than 1 cm-1.  

The experimental spectral resolution curve of the spectrometer (red curve) - determined by this curve 

resolution technique on the 265.2042 nm mercury line data - compare well with the theoretical spectral 

resolution results (black dotted curve) obtained by using equations (eq. 12), (eq. 13) and (eq. 14), with A= 

100 which determined from diamond experiments as shown in Fig. 4.8.  
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 Fig. 4.7: Example showing how to find the FWHM of the mercury line for the spectrum 

recorded for a slit width of 100 µm (red curve). The FWHMs of the spectrum bands (main peaks of the curve) 

contain the contributions of the neighboring lines.  The green, pink and light blue curves and their blue sum 

are the Gaussian simulations of these three bands. The maximum and FWHM of the mercury line at 

37695.57 nm are indicated with [+] signatures (note that the heights are not auto-scaled but the predicted 

intensities of the model).  

As discussed in connection with Fig. 4.5, the resolution will depend on whether spectra measured with a 

multi-channel Czerny-Turner spectrometer are recorded in static or extended mode. This feature of the 

dispersive CCD spectrometer systems will cause testing with the same single line to give different spectral 

resolution results depending on the grating angle setting. As an example we show in Fig. 4.9 spectra for the 

265.2042 nm mercury line, recorded for two different central wavenumber settings. An obvious difference 

is clearly seen. 
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 Fig. 4.8:  The wide green points are the measurements of the linewidth ΔωM of the low 

pressure mercury lamp for various slit widths. The narrow red points, connected by the red curve, are the 

experimental spectral resolution data Δω, obtained by means of (eq. 16). The black dotted curve is the 

spectral resolution modeling results (theoretical spectral resolution) based on equations (eq. 12), (eq. 13) 

and (eq. 14).  A = 100 was determined during the diamond experiments.    
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 Fig. 4.9: Example of spectra obtained for the three studied mercury lines at 37695.57, 

37672.29 and 37651.86 cm-1. Both curves were obtained by use of a slit width of 40 μm in the static 

recording mode. The black and red curves were recorded in different pixels of the CCD by use of settings of 

the central pixel at absolute wavenumbers of 37695.57 – 700 = 36995.57, and 37695.57 + 700 = 38395.57 

cm-1, respectively. The difference in spectral resolutions, Δω, is significant, as indicated.  

 

4.7 Discussion  

According to the expression of the spectral resolution, (eq. 12), the spectral resolution depends strongly 

(quadratic) on the absolute wavenumber of the Raman scattered light. In DUV the wavenumbers are about 

twice the values in the visible range. Therefore, in order to get similar spectral resolutions for shorter 

ultraviolet exciting wavelengths, especially in the extreme DUV, one has to choose high groove-density 

gratings and narrow entrance slit widths to maintain/obtain high resolution. The wavenumber position of a 

Raman band also has a significant effect on the spectral resolution. Fig. 4.5 shows this trend of the spectral 

resolution along the Raman shift axis.  

Although equations (eq. 12), (eq. 13) and (eq. 14) reveal the spectral resolution in dependence of all the 

principal factors, the effect of diffractions and aberrations has not been detailed determined by the present 

theoretical approximation method. If one would examine these effects it requires information on the actual 

situation of the optical components and deep optical investigations. Instead of this however, we have 

introduced a new approximate procedure to handle the situation: By introducing the diffractions and 

aberrations compensating factor A. This DACF factor, in (eq. 14), is used to develop a hyperbola function 

model for the spectral resolution with respect to the width of the entrance slits and for the different 
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settings of the experimental situation. The experimental data obtained during this work have shown that 

this procedure is well suited to fit the results, as seen in Fig. 4.4 and checked in Fig. 4.8.  

 

4.8 Conclusion  

Often - in Raman spectroscopy - one wants to know what the true width of an observed Raman band is. We 

here present a generalized method to determine it. At first one has to find out what is the particular 

spectral resolution of the applied instrument at the precise position where the Raman band is located. We 

have demonstrated that this can been done by using the equations (eq. 12), (eq. 13) and (eq. 14). All the 

parameters except a new one A (or DACF) can be easily found, and A can be determined by measuring on a 

given narrow line, in casu the diamond Raman fundamental at 1332.4 cm-1 or low pressure emission plasma 

lines from mercury gas. Then, as soon as the spectral resolution at the position of the Raman band in 

question is known, the band width can be found by means of (eq. 16), as derived in Appendix 4. In order to 

ensure the measuring accuracy, it should be noted, that the grating should be turned to such an angle that 

the tested Raman band is located at the central pixel area on the CCD detector – also during recording in 

scanning mode - because only at the central pixel area is the exact condition for using the equation (eq. 12) 

strictly fulfilled. Otherwise, there will be deviations as shown in Fig. 4.5 (black lines). At the same grating 

setting also one takes advantage of the feature that the central area of the CCD is in the optimized position 

for the slit imaging.  

It is to be noted that many CCD-based Raman spectrometric systems apply so-called static recording modes, 

i.e. spectrometric detection of photons in many pixels of the detector while keeping the grating still (static). 

Instead of this the Renishaw system can be operated in a so-called extended scan mode, in which the 

grating is synchronously moved coupled to the charges in the CCD pixels [4.17]. We conclude from our 

analysis here that the static and the extended recording modes differ with respect to their resolution 

properties as described. This dependence has been widely overlooked in the literature, but can now be 

accounted for by use of the new method. 
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Symbols to Chapter 4:  

A               The Diffractions and Aberrations Compensation Factor (DACF) 

bent            Width of entrance slit  

bimg            FWHM of the entrance slit image for M = 1 

blimit           The limitation FWHM of the slit image for M = 1 

d                The spacing of the grating grooves 

f1                Focal length of concave mirror 1 or lens 1     

f2                Focal length of concave mirror 2 or lens 2    

G                Diffraction grating groove density  

gL(ω)          Spectrum of the exciting laser  

gL0              Normalizing constant corresponding to maximum on the Laser peak.  

gLR (ω)        Profile of the Raman band excited by a laser   

gM (ω)        Profile of the measured Raman band 

gR (ω)         Profile of an true Raman band  

gR0              Constant corresponding to maximum on the true Raman peak. 

gs (ω)          Signal obtained at the detector for a monochromatic line 

gS0               Normalizing constant for the spectral contribution (expanded by spectrometer) of a  

                    monochromatic light.   

I(r)               Intensity distribution of an Airy diffraction pattern versus the radius r 

J1(r)            Bessel function of the first kind.  

ln2              Natural logarithm of 2 

M                System magnification 

r                  Radius of the Airy disk diffraction pattern 

α                Angle between the incident light and the diffracted light  

∆λ              Difference between two close wavelengths 

∆ω             Theoretical spectral resolution of spectrometer [cm-1] 

∆ωS            Experimental spectral resolution of spectrometer [cm-1] 

ω1              Narrow incremental section (a delta function) of the laser spectrum [cm-1] 

ω2              Wavenumber of integration in convolution [cm-1] 

ωs              The variable of the wavenumber difference between the real Raman signal and  

                   the measured Raman signal [cm-1] 

∆ωM           Measured bandwidth of Raman band [cm-1] 

∆ωR            True Raman bandwidth [cm-1] 

ωr               The variable of Raman shift [cm-1] 

∆ωL            Linewidth of the exciting laser [cm-1] 

∆Ѳ             Difference between two close diffraction angles 

λL               Wavelength of the exciting laser  

ω0              Central Raman wavenumber shift for static grating measurement [cm-1] 

ωR                Raman wavenumber shift [cm-1] 

ωL              Absolute wavenumber of the exciting laser [cm-1] 

Ѳ               Grating diffraction angle 

Ѳi                      Grating incident angle 
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5    DUV Raman spectroscopic studies of Gasoline. 

 

5.1 Introduction 

As a petroleum-based fuel, gasoline consists of a complex mixture of hundreds of hydrocarbons. The 
performance properties gasoline is closely related to the chemical constituents in the specific hydrocarbon 
mixture of the fuel. The gasoline octane number is an important property which defines the antiknock 
quality of the fuel. The content of aromatic compounds is boosting the octane number. On the other hand, 
the aromatics compounds - such as the common so-called monocyclic BETX group (the 6 compounds 
Benzene, Toluene, Ethylbenzene, and three isomers of Xylene) - are highly polluting compounds. These 
chemicals are able to penetrate soil and thus pollute the underground drinking water reserves. On January 
1st 2000 a new legislation was introduced in Denmark with respect to aromatics in gasoline: the maximum 
allowed benzene content was fixed to be 1% and the maximum total content of aromatics was 42% [5.1].  
Since the makeup of fuel mixtures requires a careful balance between the components and a reproducible 
consistency of the mixture, it is essential to be able to determine quickly and reliably the identity and 
relative content of the active chemical components, present in the fuel batch.   

Traditionally gasoline is analysed in many different ways. For instance the total aromatic content is 
determined by a PIONA analyser, which is based on a gas chromatographic method. The alkanes, iso-
alkanes, alkenes, naphthenes and aromatics in the gasoline are separated and analysed. The benzene and 
MTBE contents are also traditionally determined by gas chromatographic methods [5.1]. Compared with the 
above motioned analytic methods, Raman spectroscopy has some remarkable advantages such as rapidity, 
no-contact, milliliter amounts sample and so on. Raman spectroscopic studies of gasoline have occasionally 
been described in the literature, e.g. with respect to determination of octane number and Reid vapour 
pressure [5.2]-[5.4], percent content of oxygen [5.5] and amount of aromatics [5.6], [5.7]. The fluorescence 
interference is a persistent problem for gasoline analysis when the wavelengths of excitation lasers are 
located in the visible range [5.8]. Therefore, most of the above mentioned applications were implemented by 
Fourier transform infrared Raman spectrometry in order to reduce the fluorescence. 

The difficulty caused by fluorescence interference can be addressed in the opposite way, i.e. shifting the 
excitation source to the deep ultraviolet (DUV) range. This is because the fluorescence spectra usually 
prevail in the wavelength range from 300 to 700 nm or longer and there exists a cut-off wavelength at the 
shorter wavelength side in the UV region for condensed materials. By choosing an excitation wavelength so 
short, that the excited Raman signals also occur at wavelengths shorter than the fluorescence spectrum, 
then the Raman signals and the fluorescence spectrum are separated, resulting in the fluorescence 
interference being greatly diminished. Moreover, the signal intensity is much enhanced because the 
scattered Raman intensity is proportional to the fourth power of the light frequency [5.9].    

Another important advantage of using DUV light sources in Raman spectroscopy is the possibility of a 
significant improvement in resonance enhancement. The resonance enhancement is realized while the 
energy of the excitation photon is close to an electronic transition between two states, which often give 
rise to an absorption band in the absorption spectrum. In the situation of resonance enhancement, the 
Raman intensity can be increased dramatically. A resonance-enhanced signal can be several orders of 
magnitude more intense than the normal Raman signal [5.10], [5.11]. Resonance Raman spectroscopy is 
particularly useful in analytical chemistry when applied to a sample containing a mixture of individual 
species [5.12], [5.13]. The Raman bands associated with the different components can be selectively enhanced 
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when excited according to their electronic transitions when in resonance. Therefore such a situation is 
suitable for analysis of a complex mixture, and it may even make it possible to determine components of 
small contents.  

However, the resonance Raman situation can also become a disadvantage, when the component of interest 
has no resonance band in the DUV range. As we shall see in the following, such a case is found for MTBE 
and most of the alkanes in gasoline, and the Raman signals of such components are totally suppressed 
relatively to the resonating substances, thus making analysis of the components not in resonance difficult 
to realize by DUV Raman spectroscopy. 

 
 

5.2 Gas Gap Cell 

DUV resonance Raman spectroscopy should be uniquely suited for studies of aromatic species in fuels, coal 

liquids and in petroleum fractions [5.14], [5.15].  Most aromatic compounds have strong and broad resonance 

absorption bands in the DUV range, meaning that the test samples are not DUV transparent. Therefore the 

sampling area is confined to a small spot on the surface of the sample, whether it is in contact with a quartz 

wall or with a gas atmosphere (a gas gap in a convenient cell). Under a microscope the gathering direction 

of the Raman signal is normally 180o from the direction of the vertical excitation laser beam (back 

scattering). This is also practical for the testing of samples absorbing strongly the Raman signal. In the 

following, we will describe some measuring difficulties for the situation of use of the microscope Raman 

entrance, and we will introduce a simple device to solve these problems.  

Firstly, let’s consider the Raman sampling from a surface which contacts with a quartz wall (Fig. 5.1 (a)). 

Because the entire energy of the excitation light is absorbed in a tiny area “between” the sample and the 

wall, the amount of undestroyed sample in this sampling area is rapidly going down. Furthermore a bubble 

is often appearing during the measurement. It most probably is due to decomposition and the heating 

effect of the DUV light. For a multi-compound mixture, such as a gasoline sample, this behavior is very 

obvious. It certainly destroys the quality of the measurements. In order to avoid this problem, the magnetic 

stirring has been used to circulate the sample as shown in Fig. 5.1 (a). However, it did not improve the 

measurements to any obvious extent. The reason is considered to be due to the laminar flow near the 

quartz wall. In the sampling area, actually, the liquid moves slowly.   

Another method, a setup of a flowing stream of a liquid in a quartz capillary has been constructed and used 

for several aqueous solutions, wine, etc. [5.15]. A picture of such a quartz capillary tube setup is shown in Fig 

5.1(b). However, for most petroleum products, it requires a quite complicated setup because these liquids 

are volatile, toxic and corrosive. Considering the laminar flow near the quartz wall, the movement of the 

sample is actually still not realized very well if the liquid has a high absorbance. Another disadvantage of 

the tube system is that the Raman signal has interference from the quartz material because the wall is very 

close to the Raman sampling area. 

Therefore, we considered Raman sampling from the “naked” sample surface - with a gas gap - as shown in 

Fig. 5.1 (c). The convection can be obtained by itself because of the disturbances from the laser beam, and 

the heat and the decomposed compounds will be easily dispersed. Since the sample is often volatile, the 
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gas gap cell must be airtight. It is not only for keeping the health of the operator but also for the 

stabilization of the level of the surface, because the excitation beam is supposed to be kept in focus on the 

surface to stabilize the measuring.   

Then a new problem for the measurement of gasoline sample was met. During the DUV laser exposure, a 

gasoline drop tended to be formed on the sampling window, exactly where the laser beam goes through as 

shown in Fig. 5.1 (d).  Fig. 5.2 (b) shows a photograph of a gasoline drop formed by excitation for 1 minute 

in a 10 mW 244 nm laser beam. This phenomenon does not occur when the excitation is done with visible 

light, such as the blue 488 nm line, as shown in Fig. 5.2 (a), or when the samples are simple mixtures, such 

as e.g. a mixture of toluene and pentane. Our explanation of such an abnormal phenomenon is that the 

DUV light - when being strongly absorbed in the liquid – destroys some of the molecules. The 

decomposition products increase the surface tension of gasoline, thus the molecular may be pulled to 

where the DUV light illuminated.-  or the most absorbing species may act as condensation nuclei for the 

condensation of the vapor. However it seems that the drop is not formed from the vapor. If starting the 

measurement by use of the more developed cell (see later Fig. 5.3) with a wetted window, after the DUV 

laser beam exposure, the window turned to dry.  

Since the gasoline has a high wettability for quartz, the upper window is wet, already when the cell is half-

filled. The wetted upper wall of the cell actually provides the problematic point. The transport of the 

gasoline to the sampling window is shown with arrows in the Fig. 5.1 (d).  

To overcome the problem we surrounded the sampling window with a material having a low surface 

tension so that it is non-wetted with gasoline. PTFE is presently the best choice, and it is very non-reactive 

with gasoline and non-soluble in gasoline. Fig. 5.3 shows a gas gap cell with a quartz window surrounded by 

PTFE.  Thereby, the liquid surface cannot reach the window surface, which maintains the sampling window 

in a “dry” condition during the DUV illumination. 
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 Fig. 5.1:  Different versions of sampling cells for liquids, with vapor pressure (a), (c), (d), and 

for a quartz capillary tube cell for liquids with no vapor pressure and non-absorbing liquids (b). The picture 

(b) of the tube setup is from [5. 15].  

 

 

 Fig. 5.2: Photographs of the same half-full cell, (a) under blue light excitation and (b) under 

deep ultraviolet excitation. The drop is hanging where the invisible DUV beam is focused. 
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 Fig. 5.3: The developed gas gap cell with a quartz window surrounded by PTFE. No drop is 

formed on the quartz window.   

 

5.3 The experimental setup and the measurement parameters. 

In the following entire experiments, except the excitation wavelength all the measurement parameters as 

well as the laser power, exposure time, objective and the width of the entrance slit are set to be same as 

below. 

The instruments: 

 Spectrometer:  
An InVia Reflex spectrometer system with micro-entrance (Renishaw plc.);  
Traditional x15 UV objective; 
Acquisition time is 20 second, accumulation 2;    
The lowest cutoff wavenumber of filters are 150, 200 and 550 cm-1 for 257.3, 244.0 and 229.0 nm 
respectively. 
Width of the Entrance slit: 40 µm. 

 Laser:  
A 95-SHG-QS frequency-doubled Argon ion laser (Cambridge Laser Laboratories Inc.);  
Three DUV laser lines: 257.3, 244 and 229 nm;  
The output power from the laser head was adjusted to 15 mW for each laser lines, about 20 % 
power (3 mW) reaches the surface of sample. 

 The developed gas gap cell (as shown on Fig. 5.3). 

 

Samples: 

 Six types gasoline: Statoil 92, Statoil 95, Statoil 98, Shell 92, Shell 95 and Shell V-power (also 

named Shell 99), were taken from gas station on 6th August 2010 in the Copenhagen area. 

 

 Gasoline components:  
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Chromatics: Benzene, Toluene, Ethylbenzene, three isomers of Xylene and Naphthalene. 

Aliphatics: Butane, Pentane, Hexane and Heptane. 

Agent: MTBE and Ethanol. 

 

 Diamond: 

All the measurements have been calibrated by the diamond peak at 1332.4 cm-1. 

 

5.4 Overview of the DUV Raman Spectra of Gasoline: The DUV Raman 
Spectra of Gasoline Excited by Three Different Wavelengths, 
257.3, 244.0 and 229.0 nm. 

Fig. 5.4 shows the DUV Raman spectra of Shell 92 gasoline excited by the three different wavelengths, 
257.3, 244.0 and 229.0 nm, plotted on the same wavenumber shift scale. In the 257.3 nm excited spectrum, 
no Raman bands can be observed but only the strong fluorescent background. Therefore, the 257.3 nm 
excitation line must be abandoned for gasoline Raman analysis. 

 

 Fig. 5.4: The Raman spectra of Shell92 gasoline excited by three different wavelengths, 
257.3, 244 and 229 nm, showing the different results.  
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As seen in Fig. 5.4 in the 244.0 nm excited spectrum, there are still reminiscences of the fluorescent 

background. Fortunately, within the range of 0 – 2000 cm-1, in which most of the intense bands are 

contained, the fluorescent background is much lower than in the range 2000 – 4000 cm-1.  

In the 229.0 nm excited spectrum, the fluorescent background is avoided completely. Compared with the 

244.0 nm excitation spectrum, the 229.0 nm excitation spectrum obviously has a much different profile. 

According to the following study, the Raman spectrum excited by 244.0 nm is mainly dominated by the 

aromatics present in the gasoline, including monocyclic and bicyclic species; and it will be shown that the 

small content of bicyclic aromatics play an even more important role in the spectrum excited by the 229.0 

nm excitation line. Thus, these two excitation lines will have different functions for the analysis of gasoline 

samples. 

 

5.5 Raman Spectra of Mixtures of Aromatic and Aliphatic Liquids, 
Represented by Toluene / Heptanes, Toluene / Pentane, Gasoline 
/ Pentane, by use of the 229 nm excitation. 

Aromatic components have very high Raman scattering cross-sections owing to large polarizability changes 

under laser excitation [5.16]. The bands from these components dominate specific Raman spectral regions of 

aromatic and aliphatic mixture, and analysis of the aromatics in gasoline has previously been performed by 

visible laser excitation [5.17]. For the case of DUV laser excitation, the situation becomes more delicate 

because most aromatic components have resonance absorption of DUV light, resulting in resonance Raman 

scattering, and thus extremely enlarged Raman cross-sections occur. Oppositely, most aliphatic 

components in the gasoline do not show absorption or resonance Raman scattering affects over the range 

of 220 – 260 nm.  

At first, we started to investigate the behaviour of simple aromatic / aliphatic sample mixtures of Toluene / 

Heptane and Toluene / Pentane. Fig. 5.5 shows the Raman spectra of Toluene and Heptane mixtures 

excited by the 229 nm line. It is clear that Toluene dominates the Raman spectra. Only the most intense 

and relative broad bands of Heptane, at 1300 and 1460 cm-1, corresponding to CH2 twisting and CH2 

wagging modes [5.20], respectively, can be weakly observed when the Heptane concentrations are high, e.g. 

80 vol. % and 60 vol. % of Heptane. In the spectra of concentration lower than 40 vol. %, no bands of 

Heptane can be observed. The situation is similar for the mixture of Pentane and Toluene as shown in Fig. 

5.6. 

The aromatic compound Toluene seems to dominate over the aliphatics – Pentane and Heptane - in 229 

nm excited DUV Raman spectra. 

A typical gasoline mixture - like standard Shell 95 octane gasoline - contains about 5 weigh % Pentane. A 

229 nm excited Raman spectrum of such a gasoline does not show any sign of these 5 % Pentane, see Fig. 

5.7. Then we considered if we could observe Raman bands of Pentane in the gasoline by increasing the 

concentration of pentane. As Fig. 5.7 shows, the Raman bands of Pentane are even weaker than for the 
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mixture with Toluene, meaning that there must be at least one component in the gasoline sample that 

gives rise to even stronger resonance Raman scattering than Toluene for 229 nm excitation. 

As the above results shown, the constituent resonance bands dominate the Raman spectra of the mixture. 

Therefore most of the aliphatic components - without resonance - will not be presented in the 229 nm DUV 

Raman spectrum. With respect to the aromatic components in a typical gasoline, toluene has the largest 

content, on the order of around 10 vol. %. However, the 229 nm Raman spectrum of the standard Shell 95 

octane gasoline shows its most intense peak at 1381 cm-1 at a position which does not correspond to the 

most intense peak of toluene at 1004 cm-1. This 1381 cm-1 peak most probably should be assigned as a 

bicyclic ring breathing mode in naphthalene, C10H8 
[5.18]. This is in accordance with a quantum mechanical 

calculation [5.21] done in our laboratory, see Fig. 5.8. In the following we will focus on naphthalene in a 

different mixture.  

 
 
 Fig. 5.5: The Raman spectra of a series mixture of Toluene / Heptane excited by the 229 nm 
laser line.  
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 Fig. 5.6: The Raman spectra of a series mixture of Toluene / Pentane excited by the 229 nm 

laser line.  

 

 Fig. 5.7: Raman spectra of a series of mixtures of standard Shell 95 octane Gasoline / 

Pentane, excited by the DUV 229 nm laser line. 
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5.6 Raman Spectra of Naphthalene and Toluene Mixtures by use of 

the 244 nm excitation. 

Naphthalene is a highly poisonous compound C10H8, bicyclo[4.4.0]deca-1,3,5,7,9-pentene, 

CAS number 91-20-3. It occurs in natural carbonaceous materials such as raw oil. 

We have calculated the optimized structure and its vibrational spectrum [5.21]. The monocyclic ring 

breathing mode in Toluene at 1004 cm-1 and the bicyclic ring breathing mode in Naphthalene at 1381 cm-1 

are shown in Fig. 5.8, in accordance with our quantum mechanical calculations [5.21]. In the following we will 

focus on naphthalene in a different mixture. 

 
 

 Fig. 5.8: (a) The monocyclic ring breathing mode in Toluene at 1004 cm-1; (b) the bicyclic ring 

breathing mode in naphthalene at 1381 cm-1 [5.21]. 

Fig. 5.9 shows the 229 nm DUV Raman spectrum of a 2.5 weight % of Naphthalene dissolved in Toluene, 

and as seen the Naphthalene completely dominates the Raman spectrum. Only the most intense peaks of 

toluene can be weakly seen in the spectrum of the mixture, meaning that Naphthalene has a much larger 

Raman cross-section than Toluene when using of the 229 nm excitation. According to the absorption 

spectra of Toluene and Naphthalene, although both have an absorption peak at 220 nm, Naphthalene has 

stronger absorption than toluene at 229 nm [5.18], [5.19]. In the gasoline sample, the bicyclic aromatics 

obliterate the possibility of seeing the presence of aliphatic compounds in the Raman spectrum. With 

respect to molar fractions, the content of the bicyclic aromatics is much lower than of the monocyclic 

aromatics, and Naphthalene is the main bicyclic component with a concentration of around 0.5 weight % in 

the gasoline. Thus the intense bands of Naphthalene, occurring at about 765, 1028, 1237, 1381, 1460 and 

1629 cm-1, are present in the spectra of gasoline. 

http://en.wikipedia.org/wiki/CAS_registry_number
http://www.commonchemistry.org/ChemicalDetail.aspx?ref=91-20-3
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 Fig. 5.9: The Raman spectra of Toluene and a 2.5% (weight) solution of Naphthalene in 

Toluene, excited by the DUV 229 nm laser line. 

 

5.7 Artificial Gasoline 

When comparing the Raman spectra of Naphthalene (essential features of the red curve in Fig. 5.9) and 

gasoline (the upper blue curve in Fig. 5.7), we see that all the peaks of naphthalene are present in the 

gasoline spectrum. This clearly shows that Naphthalene is dominating the Raman spectrum of gasoline 

when using the 229 nm excitation. Therefore, it must be concluded that the 229 nm excited spectra are 

suitable to determine the content of Naphthalene in gasoline, and the band of 1381 cm-1 is useful as quick 

indicator of naphthalene. On the other hand the 229 nm excited spectra are not suitable to determine 

many other other components in the gasoline because of its normal content of Naphthalene and other 

resonance Raman compounds.  

In order to study the detailed behaviour of Naphthalene containing gasoline, we started to prepare and 

measure an artificial gasoline without Naphthalene, and then we increased the Naphthalene content 

gradually. The composition of our artificial gasoline was based on common average gasoline analysis 

reports. The proportion of each component and the corresponding Raman spectrum are shown in Fig. 5.10. 

The major monocyclic aromatics fractions consist of Benzene, Toluene, Ethyl-benzene, m-Xylen, o-Xylen 

and p-Xylen (also called BTEX). All the members of the BTEX group of compounds are all in resonance at 
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229 nm. This is also to be expected when looking at their absorption spectra, shown in Fig. 5.17. Most of 

the characteristic Raman peaks of the BTEX compounds can be found in the spectra of the mixtures. 

Heptane and Pentane were used to represent the aliphatic fractions. Because of the high content of n-

alkanes – often as high as about 80 % proportion - the bands of CH2 twisting and wagging modes in n-

alkanes, occurring at about 1300 and 1460 cm-1, can be observed in the Raman spectra of many mixtures.  

As shown in Fig. 5.10, the spectrum of the artificial gasoline is quite different from the spectrum of the real 

gasoline (Fig. 5.7). Our explanation for this is that it must because of the lack of small amounts of bicyclic 

aromatics fractions, that by virtue of their strong resonance Raman spectra have a very dominating 

influence on the Raman spectra when present. This explanation is further supported in Fig. 5.11, showing 

the Raman spectra of Naphthalene / Artificial gasoline mixtures as a function of small Naphthalene 

additions (concentrations given in weight %). A content of Naphthalene as low as 0.01 % obviously has the 

ability to dramatically increase the Naphthalene peak of 1381 cm-1. Since Toluene also has a Raman band at 

1380 cm-1, the determination of Naphthalene in concentrations much lower than 0.01 % is difficult. On the 

other hand it is clear the small amounts have much influence.    

When we further increased the concentration of Naphthalene in the artificial gasoline until reaching  

concentration levels of about 0.5 % naphthalene, the Raman spectra of the artificial and the real gasoline 

are very much similar, as shown in Fig. 5.12.  
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 Fig. 5.10: The Raman spectra of the artificial gasoline and the corresponding components, 

excited by the DUV 229 nm laser line.  
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 Fig. 5.11: The Raman spectra of the Naphthalene / Artificial gasoline mixtures as a function 

of Naphthalene concentration (weight %) excited by the DUV 229 nm laser line. 

 

 Fig. 5.12: The Raman spectra of Naphthalene / Artificial gasoline mixtures as a function of 

the Naphthalene concentration (weight %); the dashed line is the spectrum of the standard Shell 95 octane 

gasoline, excited by the DUV 229 nm laser line. 
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5.8 Raman Spectra of Gasoline and Toluene Mixtures by Use of the 
244 nm Laser Excitation. 

As motioned above, the Raman spectra of gasoline are mainly dominated by naphthalene because 

naphthalene has an extremely strong absorption peak at 220 nm, [5.18]. Compared with the absorption 

bands of Naphthalene and Toluene, the latter has two broader absorption bands [5.18], [5.19]. Therefore, it is 

possible to select an excitation wavelength, in which the Raman bands assigned to monocyclic and bicyclic 

chromatics are comparable to a typical gasoline sample, thus to realize a rapid analysis of the aromatic 

species, by comparing the different Raman bands. 244 nm is such a wavelength.  

The spectra of gasoline, excited by 244 nm, show the significant difference to the 229 nm excited spectra. 

As shown in Fig. 5.13, two peaks of similar intensity - at 1004 and 1381 cm-1 - could be assigned to the 

breathing mode of monocyclic and bicyclic chromatics, respectively. For the monocyclic aromatic 

components in a typical gasoline, Toluene occurs with the highest percentage (contents at around 10 

vol. %).  

Raman spectra of different concentrations of toluene in gasoline were then measured. The results, the 

spectra shown in Fig. 5.13, indicate how the increasing content of Toluene dominates the Raman spectra. 

Compared with the spectra of pure toluene and gasoline, the intense peaks of toluene, at 787, 1004, 1029 

and 1209 cm-1, are clearly presented in the gasoline spectrum. The relatively weak peaks at 624, 1380 and 

1608 cm-1 can also be observed, and the peaks at about 1380 and 1608 cm-1 are overlapped with the 

Raman bands of the bicyclic aromatics.  

The spectra of the mixtures in Fig. 5.13 perform interesting behaviours with respect to the background 

fluorescence noise. The Raman spectra are shown as intensity normalized results; and the fluorescence 

backgrounds are subtracted. For the original Raman spectra as shown in Fig. 5.14, the spectrum of pure 

toluene shows a strong fluorescence background. An interesting result is that addition of a small amount of 

gasoline can reduce the fluorescence background such that some weaker bands, such as 1380 and 1600 cm-

1, become more clearly distinguishable.   
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 Fig. 5.13: Raman spectra of toluene and Shell 95 gasoline mixtures by use of 244 nm 

excitation; all the bands of toluene are present in the gasoline spectrum. 

 

 

 Fig. 5.14: Original Raman spectrum of toluene (top) and a Toluene / gasoline mixture 

(bottom) by use of the DUV 244 nm laser line excitation; the added gasoline acts to reduce the fluorescence 

background.  
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5.9 Raman Spectra of Artificial Gasoline by Use of 244 nm Excitation. 

In this section we used the 244 nm excitation laser light. The composition of the artificial gasoline used was 

the same as above (composition shown in Fig. 5.10). For the 244 nm excitation, the resonance level of 

naphthalene obviously is reduced. Thus a higher content of naphthalene can suitably be studied. Fig. 5.15 

shows the spectra of the artificial gasoline samples containing 0.5, 1 and 2 weight % of Naphthalene, 

respectively. The relative intensities of the bands at 1004 and 1381 cm-1 express the concentrations of the 

monocyclic aromatics (the BTEX group) and the Naphthalene.    

For the artificial gasoline without any Naphthalene content, the Raman spectrum contains the strong 

fluorescence background as shown in Fig. 5.16 which is the original spectrum (in Fig. 5.15 the fluorescence 

background has been subtracted for the artificial gasoline curve). The spectra of artificial gasoline with 

some Naphthalene contents show much lower background noise. Since Naphthalene has no band 

contribution at 1004 cm-1, it must mean that the added 0.5 % naphthalene actually reduces the 

fluorescence, and that the presence increases the Raman intensity of the other components (such as e.g. 

the toluene band of 1004 cm-1).  

 

 Fig. 5.15: Raman spectra of artificial gasoline with different contents of Naphthalene, excited 

by use of 244 nm DUV laser line; the spectrum of the real gasoline (Shell 95 octane standard) is also 

presented for comparison.  
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 Fig. 5.16: The original Raman spectrum of artificial gasoline without and with a small 

Naphthalene content excited by use of the 244 nm DUV laser line; the added naphthalene reduce the back 

ground noise and increase the Raman intensity.  

 

5.10 Raman Spectra of Mixtures of Gasoline and MTBE (an 

antiknocking Agent), by use of 244 nm laser excitation. 

MTBE or methyl-butyl tertiery ether, MTBE has been widely used as an antiknocking agent for automobile 

engines to substitute the TEP (tetraethyl lead) used in the early-days of the car socities. MTBE is a highly 

polluting contaminant for the underground water reserves (very small quantities of MTBE gives water a bad 

taste), and MTBE has now been forbidden to use in many states. Ethanol, the other oxygenate antiknocking 

agents, have been started to be used by some gasoline producer, such as Shell. In a previous study by 

visible laser light [5.8], we have reported on the difficulty of fluorescence interferences when trying to use 

Raman spectroscopy to test gasoline for the content of MTBE.  

As obvious from the transmission spectrum shown on Fig. 5.17, MTBE has a quite high absorption at 229 

nm (the transmission is about zero) and therefore MTBE is expected to exhibit a resonance Raman 

behaviour at 229 nm. Therefore we conducted experiments to see if DUV excitation could be of help in this 

connection. 

229 nm Raman spectra of MTBE itself and of high contents of MTBE in gasoline (40 and 80 vol. % mixtures) 

were measure here as shown in Fig. 5.18. The results show however that the MTBE content does not show 

up in the Raman spectra of the mixtures. The characteristic bands of MTBE are simply not present in the 
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spectra of mixtures. We must conclude that it is unsuitable to use the 229 nm excitation and Raman 

spectroscopy to analyze for the MTBE agent in gasoline. 

According to the transmission spectra (Fig. 5.17), Ethanol has lower absorption and hence resonance level 

than MTBE, meaning the 229 nm excitation should also be unsuitable for ethanol analysis in gasoline.  

In addition to this, the transmission spectra of MTBE, ethanol, hexane and heptanes show a same tendency, 

i.e. the absorption of these compounds are obviously increasing when the wavelength is closing to 200 nm. 

This may indicate that they are resonance in the further short wavelength range (< 200 nm). Oppositely, 

the absorption of Toluene shows a contrary tendency as the green line shown on Fig 5.17. This contrary 

tendency is hardly to be seen because of the saturated absorption.  

Following the tendency of these absorption curves, the aliphatic compounds may have stronger resonance 

then aromatics, meaning, the further shorter wavelength excitation (< 200 nm, so called vacuum ultraviolet) 

is possibly suitable for aliphatic components, ethanol and MTBE analysis.  

 

 Fig. 5.17: Transmission spectra of Hexane, Heptane, Ethanol and Toluene; the testing 

samples are no diluted. The propagation distance is 1 cm.  
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 Fig. 5.18: Raman spectra of MTBE and MTBE / gasoline mixture excited by use of the 229 nm 

DUV laser line. The intensity of MTBE has been multiplied by 2.5, and spectra shifted for clarity. 

 

5.11 Raman Spectra of Six Different Types of Gasoline  

The Raman spectra of six types of gasoline excited by 244.0 nm laser are shown in Fig. 5.19. The spectra of 

the different kinds of gasoline have the same peaks because they are dominated by small amounts the 

same few species of monocyclic and bicyclic aromatics in strong Raman resonance. The relative intensities 

are slightly different which may be caused by the different percentages of the aromatic fractions. Especially 

for the spectrum of the Shell 99 gasoline (commercially called V-power) has a somewhat remarkable 

difference from the other spectra. The intensities of the bands of 1381 and 1237 cm-1, corresponding to the 

naphthalene bands (see Fig. 5.9), are relative lower than for the other gasoline samples. Oppositely, the 

intensities of 1004, 787 and 624 cm-1, corresponding to the toluene bands (see Fig. 5.5), are relatively 

higher. It indicates that either the concentration of naphthalene is lower, or the concentration of toluene is 

higher in the V-power gasoline.  

In the following we describe a method to estimate the concentration the BTEX group and Naphthalene by 

comparing of 244 and 229 nm excited spectra. First, the exact concentration of naphthalene can be 

determined by the 229 nm excited spectra. This is so because the intensity of the 1381 cm-1 peak of 

naphthalene is sensitive for very low concentrations (down to 0.01 %) of Naphthalene as shown in Fig. 5.11. 

For even lower concentrations of Naphthalene one can dilute the testing sample before the recordings.  
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Once the exact concentration of Naphthalene has been determined, the 244.0 nm excitation spectrum can 

be used to determine the concentration of the BTEX group by comparing the intensities of the 1381 and 

1004 cm-1 bands which were assigned to the characteristic ring breathing modes of bicyclic and monocyclic 

aromatics, respectively. 

 

 Fig. 5.19: Raman spectra of different types of Gasoline, excited by the 244 nm DUV laser line. 

Spectra have been shifted for clarity.  

The spectra in Fig. 5.20 have been recorded by 229.0 nm laser excitation. Compared with the 244.0 nm 

excitation spectra (Fig. 5.19), the 229.0 nm excitation spectra obviously have different profiles, and show 

their most intensive peaks at 1381 cm-1, which we think correspond to the breathing mode of the bicyclic 

aromatics (see Fig. 5.8). The Raman bands of the other species are strongly suppressed because the 

resonance Raman intensities are so intensive.  

Compared with the spectra of the other different types of gasoline in Fig. 5.20, the spectrum of the Shell 99 

V-power gasoline also shows a clear difference with respect to the breathing mode of monocyclic at around 

1000 cm-1. 
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 Fig. 5.20: Raman spectra of different types Gasoline excited by 229 nm laser, excited by the 
DUV 229 nm laser line. Spectra have been shifted for clarity. 

 

5.12 Conclusions  

Considerable fluorescence interference problems were previously met when trying to analyse gasoline 

samples by Raman spectroscopy [5.8]. It was considered that to eliminate the fluorescence for allowing one 

to perform good gasoline analyses, these problems could be solved by use of deep UV light. It was then 

found that the sampling was not simple, but a so-called gas gap cell system could be finally developed that 

allowed recording of good Raman spectra. After that, it was found that the DUV excitation wavelength 

should be chosen, with wavelengths deeply enough (such as < 244 nm). Actually, some of components still 

have strong fluorescence interference with the 244 nm excitation. An interesting result was that it could be 

shown that the small content of naphthalene could reduce the fluorescence interference and increase the 

Raman intensity of testing samples, such as toluene and artificial gasoline.  

By use of the 229 nm excitation, the fluorescence interferences were completely avoided. However new 

complications were found. 

Monocyclic aromatics (members of the BTEX group) and C4-10 saturated aliphatic hydrocarbons are two 

classes of major species components in a typical gasoline. The Raman spectra of these components were 

studied as well as different proportion mixtures of the two classes, respectively, toluene and heptane or 

pentane. The results show that toluene dominates the Raman spectra of mixtures under 229 nm excitation 

because of the resonance Raman scattering of toluene. The different mixtures have almost the same 

spectrum, rather independently of the proportions. All the bands of toluene, positioned at about 624, 787, 
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1004, 1029, 1209, 1380 and 1608 cm-1, are clearly represented; and the 1004 cm-1 band is the intensive 

band corresponding to the breathing mode characteristic of monocyclic aromatics. With respect to bands 

of heptane or pentane, only two broad bands of 1300 and 1460 cm-1 could be observed, even for high 

composition ratios, such as 80 vol. % and 60 vol. %. These two bands, at about 1300 and 1460 cm-1, are 

corresponding to the CH2 twisting and wagging mode transitions. They are appearing in the spectra of most 

of saturated aliphatic hydrocarbons, and thus they cannot be used to identify definitively the heptanes or 

pentanes in a complex mixture but only to determine a rough guess on the amount of the saturated 

aliphatic hydrocarbons species. The Raman spectra of the gasoline mixtures have representative 

significance because most of the monocyclic aromatics components are at resonance in the DUV range; 

oppositely, most saturated aliphatic hydrocarbons are not at resonance in the DUV range.    

Further it was discovered that Naphthalene, a minor constituent of gasoline, oil and coal fuels, has an even 
larger Raman cross-section than what is the case for the monocyclic aromatics under the 229 nm 
excitation. This became clear by measurements of the Raman spectrum of 2.5 weight % Naphthalene in 
toluene solution. All the intensive bands, observed at 765, 1028, 1237, 1381, 1460 and 1629 cm-1 are 
belonging to Naphthalene. Therefore, it must be the case that Naphthalene is dominating the gasoline 
spectrum under the 229 nm excitation. 

Also it was realized that the content of Naphthalene in a gasoline could be determined by Raman 
spectroscopy with 229 nm DUV excitation. An artificial gasoline mixture without Naphthalene was made, 
composed by mixing Heptane, Pentane and the members of the BTEX group. By measuring the spectra of 
Naphthalene and artificial gasoline / Naphthalene mixtures as a function of the Naphthalene concentration, 
the spectrum of a 0.5 weight % content mixture is close to the spectrum of a real gasoline, standard Shell 
95 gasoline. Finally it has been demonstrated that a concentration of the Naphthalene as low as 0.01 % by 
weight can be determined by means of DUV Raman spectra using the 229 nm excitation. 

When using different DUV excitation wavelengths, the spectra of gasoline are dominated by the presence 
of different species of aromatics. For the 244 nm excitation the spectra of gasoline are equally dominated 
by monocyclic and bicyclic aromatics. Thus these spectra contain more information than for the 229 nm 
case: the intense bands of 1004 and 1381 cm-1 are respective characteristic bands for the monocyclic and 
bicyclic aromatics. The broad low intensity bands at around 1300 and 1460 cm-1 can be assigned as 
vibrational mode transitions of series of CH2 group twistings and waggings in saturated aliphatic 
hydrocarbons species (Pentane, Hexane, Heptane etc.). Therefore, one could realize a more precise analysis 
by a combined use of spectra of both 229 and 244 nm excitation. 

Regarding the anti-knocking agents, such as MTBE and ethanol, it was found that they are difficult to 
analyze by means of DUV Raman spectroscopy because of lack the resonance Raman scattering in these 
compounds. However, the absorption spectra indicate that it possibly could be implemented by use of 
excitation by even shorter wavelengths, i.e. in the vacuum UV range. 
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6    Other Applications 

 

6.1 Sudan I. 

The red dye Sudan I is considered to be toxic and carcinogenic. In recent years, several European control 

authorities have discovered the presence of Sudan I in series of imported food items, such as red canned 

chili fruits [6.1]. No known threshold limit seems to exist with respect to long-term health risks, and 

therefore there is a need for further development of the detection methods. 

Series of detection methods have been developed, most of them based on liquid chromatogaphy [6.1]-[6.4]. 

The recently applied methods for Sudan I gave detection limits on the order of around 0.5 ppm [6.5]. Since 

the food samples normlly consist of miscellaneous organic and inorganic mixtures, the analysis process of 

the liquid chromatogaphy method is somewhat complicated and slow. 

Accordingly we tried to investigate if Raman Spectroscopy could offer a new fast possibility for in-situ and 

on-location detection of Sudan dyes during food control. For the traditional visible laser excited Raman 

spectrometry, detection of Sudan dyes in the food sample is difficult because of fluorescence interference. 

Even for the pure Sudan I, a useful Raman spectrum could not be obtained by visible laser excitation, see 

Fig 6.1. The detection of Sudan I by SERS (Surface Enhanced Raman Spectroscopy) and SERRS (Surface 

Enhanced Resonance Raman Spectroscopy) could offer very accurate analysis methods with detection 

limits below 0.20 ppm. This increased sensitivity comes about because SERRS can selectively and extremly 

enhance the Raman band of the Sudan I [6.6].  

In this way the fluorecence-free DUV Raman spectrometry could provide a convenient method because the 

method can be applied directly on the food samples in bulk. Thus the DUV Raman spectrometry could be a 

fast detection method for Sudan I, as an illegal food colorant, but the problem that the radiation does not 

go through the typical glass containers is a drawback, making the analysis destructive.    

Although the detected methods have been demonstrated, the extent of scientific literature on Raman 

spectra of Sudan dyes is very limited and very few articles have been published so far. A deeper 

understanding of the chemistry and structure of these molecules is needed to develop a Raman-based 

precise method that will be able to distinguish the Sudan molecules from other azo-dyes. The current 

problem of distinguishing Sudan I from natural abundant carotenoids - especially Capsanthin - which is 

difficult due to almost identical absorption maxima [6.5],[6.7].  

 



Chapter 6 Other Applications   
 

112 
 

 

 Fig. 6.1: Raman spectra of solid Sudan I obtained with (a) 244 nm UV light and (b) 1064 nm IR 

light. Useful spectra could not be obtained with green or blue light. The calculated spectrum is shown as (c). 

The band at 2331 cm−1 in (a) is due to N2 gas, see also Appendix 9. 

 

The structure of azo dyes has been intensely discussed in the chemical literature. The azo dyes formally 

contain the azo group –N=N–, but are in most cases partly or completely transformed into the tautomeric 

hydrazo form (Fig. 6.2, b). According to our studies with the Gaussian 03W software package, the azo forms 

gave poor resemblance to the experiments. In contrast to this, the calculated spectrum for the hydrazo 

form showed good resemblance to the experimental spectrum. The detailed discussion can be found in our 

published paper, Appendix 9.   

 

 Fig. 6.2: The tautomery of Sudan I: (a) the azo form and (b) the hydrazo form (most stable).  
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6.2 Characterization of varied size germanium nanocrystals by Raman 

spectroscopy 

Recently, zero-dimensional nanocrystals have been intensively studied in theoretical and experimental 

research, due to potential applications as light emitters, non-volatile optical memories and enhanced 3rd 

order optical nonlinear effects, etc. Among these nanocrystals, the high-efficiency germanium light emitter 

application is receiving much attention because Ge has a 0.80 eV direct bandgap, only slightly larger (by 

0.136 eV) than its indirect bandgap (0.664 eV). This puts Ge emission at high efficiency, within the 3rd 

optical communication window (~1520-1620 nm). Bulk Ge emits with 10% efficiency at a direct bandgap 

wavelength of 1550 nm when optimized doping and is applied. In Ge nanocrystals usually the emission 

wavelength is shifted to shorter wavelengths because of the quantum confinement effect (QCE). Therefore, 

Ge nanocrystals with combined effects of QCE, doping and strain optimization should be very promising 

high-efficiency light emitters, covering the entire visible and IR wavelength ranges. Different sizes of Ge 

nanocrystals embedded in a SiO2 matrix formed by plasma enhanced chemical vapor deposition (PECVD), 

and analyzed the nanocrystals by transmission electron microscopy (TEM) are shown in Fig. 6.3.  

 

 

 Fig. 6.3: TEM cross-sectional images of samples (from left to right): 0126, 0269 and 0194. 

 

Samples were prepared by standard clean-room techniques on 4 inch diameter oriented Si substrates. First, 

one layer of Ge doped SiO2 was deposited. Then a SiGe alloy layer was deposited on top of the SiO2 layer. 

The atomic ratios of the Si to Ge were tuned from 1:1 to 1:0.5 and 1:0.25 for samples 0194, 0269 and 0126 

respectively. Thirdly, one identical layer of Ge doped SiO2 was deposited on the SiGe alloy layer. By 

repeating in this way the deposition of alternate layers of SiGe alloy and Ge doped SiO2, multilayered 

structures could readily be made. After deposition the samples were annealed at 1100 oC in N2 for 4 hours. 

More details of the fabrication parameters can be found in [6.8]. Samples 0126, 0269 and 0194 had 3-layer 

structures. Sample 0351 (not shown in Fig. 6.3) had a 5-layer structure with 1:1 Si/Ge ratio, made in order 

to increase the interaction with the light. The Ge nanocrystals (black dots in Fig. 6.3) were found to give 

Raman peaks at about 295-300 cm-1. A size effect was demonstrated within these Ge nanocystals that gave 



Chapter 6 Other Applications   
 

114 
 

peak position and width dependences of the Raman band as shown in Fig. 6.4. The Raman peak of Ge 

nanocystal can also be shifted by using the different excitation power density due to the thermal effect as 

shown in Fig. 6.5 (a) and (b). 

Fig. 6.5 (a) shows that as the excitation power was increased, the germanium Raman peak position takes a 

downshift and the line width increases. At low excitation powers (<11 mW), there was no obvious linear 

relationship between the shift and the excitation power. However, at high excitation powers, the heat 

effect started to play a dominant role, and a linear relationship was emerging (Fig. 6.5 (b)). Therefore, to be 

sure that the heat from the Raman excitation light was not disturbing the Raman spectra, we decided to 

record the spectra by using excitation powers of 5 mW, to reveal the unbiased properties, for example the 

size-dependent effects and the strain effects [6.9]. 

It should be noted that the spectral resolution of the Raman instrument is an important factor for these 

measurements because it directly affects the measured bandwidth and the accuracy of the band position. 

For our Raman instrument the spectral resolution of the visible laser excited spectra was about 2 cm-1. This 

spectral resolution is much better than what was the case for the DUV excited spectra (with about 6 cm-1 

resolution). In the next chapter, the spectral resolution of the Raman instrument will be discussed in detail.    

 

 Fig. 6.4: Raman spectra of samples 0126, 0269, 0194, 0351 and a reference sample 

consisting of a bulk Ge wafer. The inset is a zoom-in on the main peak of the Germanium lattice. The peaks 

at around 521 cm-1 are due to the silicon substrate of the wafer. The spectra were recorded at a sufficient 

low power level (~5 mW) to avoid heat effects [6.9], [6.10]. 
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 Fig. 6.5: (a) Raman spectra for sample 0351 with varied excitation powers from 1mW to 

21mW, (b) Relation between the FWHM and the Raman peak shift, with relation to the excitation powers 
[5.9].  

(a) 

(b) 
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6.3 Raman spectroscopy characterization of boron- and nitrogen-doped 
6H silicon carbide 

White light-emitting diodes (LEDs) are promising candidates for the illumination market to replace 

conventional incandescent lamps as energy-saving and environment friendly new light sources. One 

common method to realize white light is to use UV or blue light emitting diodes. The light from these is 

partially or fully used to optically excite wavelength converters. Therefore, such high-efficiency wavelength 

converters - with long lifetime - are indispensable. SiC is a well established substrate material for nitride 

growth and has excellent thermal conductivity. Nitrogen (N) and boron (B) doped 6H-SiC has been proven 

to be a highly efficient wavelength converter. Furthermore, combined donor-acceptor-pair (DAP) band 

luminescence from N-B and nitrogen-aluminum (N-Al) doped 6H-SiC can cover most of the visible spectral 

range [6.11]-[6.13]. 

In this connection characterization of nitrogen and boron doped SiC by Raman spectroscopy was of interest. 

Doped epilayers were grown at a growth temperature of 1725oC on low off-axis 6H-SiC (0001) substrates 

(1.4 degree off-orientation in the [1120] direction) and used as samples for Raman studies [6.12], [6.13]. The 

doping levels are given in Table 6.1.  

Table 6.1.  Boron and Nitrogen Concentrations for Samples a, b, c, d, and e. Atomic dopant concentrations 

of the epilayers were measured by secondary ion mass spectrometry (SIMS). 

 

 

 

 

 

 

Raman spectra of longitudinal optical phonon-plasmon coupled (LOPC) modes of the samples are shown in 

Fig. 6.6.  Work by the collaborators in Sweden and in DTU Photonics [6.13] has shown that the N-B doped SiC 

is a good wavelength converter in white LEDs applications. Also their work showed that dopant 

concentration differences larger than 4x1018 cm-3 were favorable to achieve intense photoluminescence 
[6.13].  

 

 

Sample B acceptor 
concentration  

[cm-3] 

N donor 
concentration  

[cm-3] 

a 8.0 x 1018 4.0 x 1016 
b 6.9 x 1018 3.2 x 1018 
c 6.9 x 1018 6.0 x 1018 
d 4.4 x 1018 9.0 x 1018 
e 5.2 x 1018 9.2 x 1018 
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 Fig. 6.6: Raman backscattering spectra of 6H-SiC samples with different dopant 
concentrations, showing the longitudinal optical phonon-plasmon coupled (LOPC) modes. The positions of 
the LOPC modes in the doped SiC samples are given in the inset frame. 

The mechanisms of Raman shifts in p- and n-type samples are different. The LOPC mode would broaden, 

lower its intensity, and shift toward higher wavenumbers with increasing free carrier concentrations. 

Usually, it is more sensitive to the amount of free electrons than to free holes. In p-type samples, very few 

acceptor states are ionized due to the large ionization energy, and the Raman shift is mainly attributed to 

the atomic size effect [6.13]. Boron atoms usually occupy Silicon lattice positions in SiC. The inter-atomic 

distance of a Si-C bond is longer than that of a B-C bond due to the smaller atomic size of boron. The biaxial 

tensile stress will thus be released which results in a decrease of the phonon oscillation frequency. 

Therefore the LOPC mode shifts toward smaller wavenumbers with higher B concentrations. In n-type 

samples, the predominant mechanism causing the Raman shift of the LOPC mode is the free carrier 

(electron) concentration. Although no obvious peak shift has been observed - between sample d and e due 

to a relatively small concentration difference - the peak intensity of the LOPC mode decreases as expected, 

when the free electron concentration increases from sample e to d. Furthermore, one can see from Fig. 6.6 

as predicted that the LOPC modes of n-type samples occur at significantly higher wavenumbers than the p-

type ones [6.13]. 
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6.4 Melamine 

 

6.4.1 Introduction     

Melamine, C3H6N6, 2,4,6-triamino-1,3,5-triazine, CAS Reg. no. 108-78-1, 

is a nitrogen-rich chemical, commonly used e.g. as main raw material of melamine resin, a thermosetting 

plastic. Recently it has received considerable attention due to numerous incidents of food contamination 

with this substance [6.14]-[6.16]. In these incidents, melamine was deliberately added to gluten, chicken feed, 

pet foods, milk etc. to elevate the measured protein content because of melamine's high nitrogen content 

(66% by mass versus approximation, 10–12% for typical protein). Ingestion of melamine may lead to 

reproductive damages, or bladder or kidney stones, which can lead to bladder cancer. 

Analysis of melamine has been carried out by gas chromatography (GC) [6.17], [6.18], GC-mass spectrometry 

(GC-MS) [6.19], [6.20], liquid chromatography (LC) [6.21]-[6.23], LCMS and LC-MS-MS [6.24]-[6.26], and Raman 

spectroscopy [6.27]-[6.30]. As a potential method with advantages of being simple, quick, cost-effective and 

sensitive, Raman spectroscopy has been intensively applied to melamine detection in food systems in 

recent years. 83 references (since 2007) can be found with the topics of Raman and Melamine by the 

Chemical Abstracts search programme SciFinder. Most studies have been focused on the surface enhanced 

(SERS) techniques because of the high sensitivity properties of SERS. About a 10 ppb detection limitation 

has been reached [6.29]. The traditional Raman spectrometry - excited by 785 nm infrared laser light - is also 

reported to achieve a successful detection of melamine, although the sensitivity was much lower; the 

detection limit being about 1% in powdered milk samples [6.30].  However, DUV Raman spectrometry applied 

to melamine detection has not been reported, and we found that it would be of interest to try it.  

Melamine is slightly soluble in water, and the solubility is on the order of 3.24 g/L at room temperature [6.31]. 

For the melamine contaminated milk and related food products, the melamine was primarily added to the 

raw milk after water was added - to fraudulently dilute the milk [6.32]. Therefore, it is important to find a way 

to perform melamine detection in liquid milk in order to obtain food safety control. By use of the 

traditional Raman spectrometry excited by visible or near infrared laser (including 785 nm) it is difficult to 

achieve an efficient determination for liquid milk because of the fluorescence interferences and the low 

Raman scattering intensity. To do the determination in a better way one has to study dried milk samples in 

solid state to perform a good Raman measurement [6.30].    

In the following study it is shown that we have found that by using DUV Raman spectrometry we could 

avoid the fluorescence interference and improve the detection sensitivity for direct melamine detection in 

liquid milk. It realizes a true quick detection in seconds without sample preparation.   

 

 



Chapter 6 Other Applications   
 

119 
 

6.4.2 Experimental Details 

 6.4.2.1 Experimental setup 

Melamin in 99.8 % pure powderous state was bought from Henan Tianfu Chemical and in all experiments 

used without further purification. Deionized water and Arla milk were used as solvents to dissolve 

melamine. The dissolving was done by intensive shaking  at frequent intervals for 1 hour at room 

temperature. The water solution did not have any precipitate. The testing samples are shown below: 

1. Melamine powder. 

2. Deionized water. 

3. The milk, brand of Arla 1.5 % fat (08 Dec. 2011) 

4. Melamine dissolved in water, 0.1 % by weight. 

5. Melamine dissolved in the milk, 0.1 % by weight. 

The Renishaw InVia Reflex spectrometer was used in the visible and DUV ranges, applying radiation of 

wavelengths of 488 and 229 nm at 10 mW (from the Lexel 95-SHG-QS Argon gas ion laser). The optical Leica 

microscope with an X 20 objective coupled to the instrument through a beam splitter was used to focus the 

laser beam onto the sample and to collect the back scattered light. We adopted the same Accumulation 

and Exposure times (2x20 s) for convenient Raman intensity comparisons between the 488 nm and 229 nm 

spectra.   

 

6.4.3 Melamine Raman spectrum, Computed and Measured 

To calculate a theoretical Raman spectrum of the melamine molecule one has to perform two steps: 

The optimisation of the structure and the calculation of spectrum. These steps were both 

performed with the Gaussian 03W software package. The structure of the Melamine molecule and 

its vibrations were obtained iteratively, in three subsequent calculations, in order to determine the 

global minimum in an efficient way. Initially the geometry was roughly optimized using the semi-

empirical PM3 type procedure, followed next by the ab initio Hartree-Fock/DFT method with 3rd 

order restricted Becke-Lee-Yang-Parr procedure (RB3LYP), at first with the 3-21G basis sets. Then 

the energy minimum structure and the vibrational IR and Raman spectra were calculated using the 

6-31+G basis sets. The vibrational frequencies for each normal mode were calculated without 

adjusting the force constants and using no frequency scaling. The results are reported in Table 6.2, 

giving approximate descriptions of dominating group frequency motions. 

 

Table 6.2: Experimental Raman spectrum (cm-1) of Melamine compared to calculated modes. Assignments 

(approximate descriptions of the modes) have been made on the basis of the calculated gas phase results 

(Gaussian/DFT/B3LYP/6-31+G model), observing the modes on a computer screen and fitting to the 

spectral appearance as shown in Fig. 6.7. 
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Mode 
no. 

Experimentala 
cm-1 

Calculatedb 

cm-1 
Intensity 
Å4/amu 

Assignmentsc 
 

1  190.1 0.01 Ring Twisting 

2  190.6 0.01 

3  213.4 0 (NH2)3 Umbrella  

4  336.4 2.15 NH2 Rocking 

5  336.9 2.15 

6  499.9 0.19 NH2 Wagging ooph  

7  502.1 0.19 NH2 Wagging ooph 

8  528.3 0.00 NH2 Wagging iph 

9  530.2 0 NH2 Rocking 

10  
569 

557.4 0.00  
NH2 Twisting 11 560.3 0.29 

12 561.8 0.27 

13 583 584.1 3.35 Ring Elongation 

14 584.2 3.35 

15 677* 682.0* 37.08 C3 Triangle Breathing 

16 743 742.3 0.07 Ring oopl Twisting 

17 742.5 0.07 

18  834.5 0 C ooph, N oopl 

19 985 960.1 10.35 N3 Triangle Breathing 

20  985.8 0.07 NH2 ipl Rocking 

21  986.2 0.07 

22  1159.0 0 N3 Triangle Rot. + NH2 Rocking 

23 1191 1179.2 0.42 C-NH2 Stretching + NH2 Rocking 

24 1179.4 0.42 

25  1308.6 0 C3 Triangle Rot. + NH2 Rocking 

26 1444 1486.0 1.39 Ring N-C=N asymmetric Stretching 

27 1486.9 1.39 

28  
1556 

1572.6 0.30  
Ring C=N Stretching 29 1572.9 4.19 

30 1573.4 4.20 

31 1660 1662.4 3.39 NH2 Scissoring + C-N Stretching ooph 

32 1662.7 3.39 

33  1697.6 2.01 NH2 Scissoring + C-N Stretching iph 

34  
3419 

3630.4 27.63 NH2 Symmetric Streching ooph 

35 3630.5 28.45 

36 3632.4 469.29 NH2 Symmetric Streching iph 

37  
3470 

3775.7 17.15  
NH2 Asymmetric Streching 38 3775.9 61.56 

39 3776.1 68.66 
aThe measured wavenumbers were obtained with 488 nm (10 mW CW) excitation on powdered melamine. 
bThe calculated wavenumbers were obtained by modeling of a single molecule in the gas phase. 
cAbbrivations: ipl: in-plane, oopl: out-of-plane, iph: in-phase, ooph: out-of-phase, rot: rotation.  

*Analytically interesting band, see text. 

As seen in Table 6.2 and in Fig. 6.7, it was possible - by use of the 488 nm radiation - to get fairly good 

correspondences between the calculated and the observed spectra with clear bands.  One should not 

expect complete matches, becase the model is based on a single gas molecule and the measurement is 

from the solid state where the moleculed interact. 
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 Fig. 6.7: a) Measurement spectrum of Melamine powder by use of 488 nm excitation; b) The 

calculated spectrum for a single molecule in the gaseous state. 

 

6.4.3.1 Overview of Results  

We succeded in measuring the Raman spectrum of 0.1 % melamine in milk, excitated by 229 nm. When 

comparing to the milk without the melamine, a new band that could be assigned to melamine was present 

at 677 cm-1, as shown in Fig. 6.9, red line. The same band is also present in the measured Raman spectrum 

of 0.1 % melamine in water, excitated with the 229 nm line, as shown in Fig. 6.9, blue line. According to the 

calculated results, Table 6.2, the 677 cm-1 band corresponds to the mode 15, which involves three carbon 

atoms out of the 6-membered ring that are performing a symmetrical breathing-like deformation, resulting 

in an approach of the ring to a triangular shape, see Fig. 6.8. 
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 Fig. 6.8: Mode 15, C3 Triangle Breathing  mode coupled to NH2-scissoring (667 cm-1 on 

measurement, 682.0 cm-1 on calculation). 

 

6.4.3.2  Detailed Discussion 

229 nm Excitation Spectra 

As mentioned, the 229 nm excition Raman spectra are shown in Fig. 6.9. A useful Raman spectrum (not 

shown) of the Melamine powder could not be obtained by regular measurement even at very low 

excitation levels because the resonance absorption caused melting and decomposition of the Melamine. An 

improved measuring method could be implemented by spinning a prepared sample with a flat surface, but 

this method was not tried.  

In the Raman spectrum of 0.1 % melamine in water (Fig. 6.9, blue line), a band can be seen near the 

characteristic band of Melamine, at 677 cm-1. There are also a series of other  distinguishable bands 

appearing in the spectrum of the Melamine-water solution. We have no good explanation of these bands 

other than decomposition of the melamine. However, these bands are not appearing in the milk sample, so 

we can neglect to discuss them. We may explain the stability of the melamine-in-milk spectra as due to a 

possible protective influence of the milk proteins on the melamine molecules so that they avoid 

decomposition.   

Comparing the Raman spectra of milk (black line in Fig. 6.9) and the Melamine contaminated milk (red line), 

the characteristic band of Melamine can be observed in the spectrum of Melamine contaminated milk on a 

0.1 % concentration level.  This is a 10 times better sensitivity of the traditional Raman spectrometry - 

excited by 785 nm infrared laser light – that was found to have a detection limit being about 1 % in 

powdered milk samples [6.30]. 
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 Fig. 6.9: Raman spectra of milk, 0.1 % melamine in water and Milk by use of 229 nm (10 mW) 

excitation. 

488 nm Excitation Spectra. 

The Raman spectra of Melamine powder excited by 488 nm is shown on Fig. 6.10 a).   

The Raman spectra of 0.1 % Melamine in water and Milk by use of the 488 nm excitation are shown in Fig 

6.10. In the Raman spectrum of 0.1 % melamine in water (blue line), the characteristic band of Melamine, 

677 cm-1 can be hardly seen unless when scaled x 60. However, in the Raman spectrum of 0.1 % Melamine 

in Milk (red line), no band can be observed; only a strong fluoresence background is obvious (the CCD is 

saturated in the range of 1000 ~ 3700 cm-1).  

We conclude that the 488 nm line cannot be used to detect the Melamine in milk. 



Chapter 6 Other Applications   
 

124 
 

 
 Fig. 6.10: Raman spectra of 0.1 % Melamine in water and in Milk by use of 488 nm (10 mW) 

excitation. The shape of the red curve is due to saturation of the detector.  

 

6.5 Outlook and future work: DUV Raman spectrometry applied to food 

analysis 

A successful application of Raman spectrometry to food analysis generally requires that one has a 

Resonance Raman effect to be active for the target compound. This is so because otherwise Raman is a 

quite weak effect that is against the possibility to realize high sensitivity detection.  

The procedure would possibly remind of the work done on finding the UV absorption band of Sudan I and 

performing the DUV Resonance Raman spectrometry. Such future work could make detection of small 

amounts of illegal additions possible in food samples. Although the DUV light might not destroy the testing 

sample by thermal effects, sample degeneration caused by the photochemistry effect may still be a 

limitation for the use of DUV Raman spectrometry. Some technical tricks, such as rotation of sample, lateral 

scanning of the sample relative to the laser beam and using suitable solvents for extraction might be used 

to solve these kinds of problems. 

With respect to Melamine, the absorption spectrum (see Fig 6.11) shows a prime resonance peak at 210 

nm and a secondary peak at 235 nm, meaning that a more sensitive detection could be achieved by use of 

210 nm or 235 nm excited Raman spectrometry. 5th harmonic generation of light from Nd:YAG and Nd:YLF 

pulsed lasers will emit respectively 213 nm and 211 nm lines that could be affordable laser lines (see Table 

2.6). Regarding the 235 nm line, an easy access can be obtained by using the 476.5 nm Argon line in 

conjunction with a new doubling BBO crystal (see Fig. 2.17). 
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 Fig. 6.11: According to the Shimadzu Company, analysis of melamine (up to 100 microg/L in 

water) is routinely done by High Performance Liquid Chromatography HPLC using UV absorption detection 

at 235 nm [6.33].  
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Abbreviations: 

AR            Antireflection  
BBO          β-barium borate, β-BaB2O4 
BTEX         Benzene, Toluene, Ethyl-benzene, m-Xylen, o-Xylen and p-Xylen 
CCD          Charge-Coupled Device 
CLBO        Cesium Lithium Borate, CsLiB6O10 
CW           Continuous Wave  
CVD          Chemical Vapour Deposition 
DAP          Donor-Acceptor-Pair  
DACF        Diffractions and Aberrations Compensation Factor 
DUV          Deep Ultraviolet 
DPSS         Diode-Pumped Solid-State 
DFB           Distributed-Feedback  
FWHM      Full Width at Half Maximum 
GC             Gas Chromatography 
GC-MS      Gas Chromatography-Mass Spectrometry 
HR             High-Reflector  
IEC            International Electrotechnical Commission 
LBO           Lithium TriBorate  
LC              Liquid Chromatography 
LCMS        Liquid Chromatography Mass Spectrometry 
LD              Laser Diode 
LED           Light Emitting Diodes 
LOPC         Longitudinal Optical Phonon-Plasmon Coupled 
LP01,          fiber 01 order Linear Polarization mode 
MTBE        Methyl-butyl tertiery ether 
MS             Mass Spectrometry 
Nd:YVO4  Neodymium Doped Yttrium Orthovanadate 
Nd:YAG    Neodymium Doped Yttrium Aluminum Garnet 
Nd:YLF      Neodymium Doped Yttrium Lithium Fluoride 
PECVD      Plasma Enhanced Chemical Vapor Deposition 
PPNCW    Periodically Poled Nonlinear Crystal Waveguides  
QCE          Quantum Confinement Effect 
QPM         Quasi Phase Matching 
SHG          Second Harmonic Generation  
SFG           Sum Frequency Generation  
TEP           Tetraethyl lead 
TEM          Transmission electron microscopy  
TEMpl        p,l order Transverse ElectroMagnetic mode 
TE             Transverse-electric 
TM            Transverse-magnetic 
UV            Ultraviolet  
VCSEL       Vertical-Cavity Surface Emitting Laser  
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Appendix 1:  
Mathmatica program for calculating the dispersion of fused silica 
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Appendix 2:  
Workshop drawings of the horizontal sampling nose     

 

 



Appendix 2   
 

131 
 

 

 
 

 



Appendix 2   
 

132 
 

 
 

  



Appendix 3   
 

133 
 

Appendix 3:  
Comparing Spectral Resolution by using the Rayleigh Criterion and the FWHM 

The definition of resolution by the Rayleigh criterion is that two Airy disk curves [5.20] (i.e. the diffraction 

cross section patterns of circular apertures) for two close wavelengths of λ and λ+∆λ, are regarded as just 

resolved when the principal diffraction maximum of one image coincides with the first minimum of the 

other [5.13], [5.14]. The unity intensity description, I(r), of an Airy disk cross section, shown below in Fig. A3.1 
[5.13], is given as 

 𝐼 𝑟 =  
2𝐽1 𝑟 

𝑟
 

2
                                                                                       ------  (eq. A3.1) 

where J1(r) is a Bessel function of the first kind and r is the radius distance from the maximum. 

The first minimum of (eq. A3.1) is found at r = 1.22 π = 3.83, therefore the just resolved Airy disk, by the 

Rayleigh criterion, can be described as 

 𝐼 𝑟 − 1.22𝜋 =  
2𝐽1 𝑟−1.22𝜋 

𝑟−1.22𝜋
 

2
                                                          ------  (eq. A3.2) 

The FWHM of the Airy disk, described by (eq. A1.1), can be shown to be 3.24, a value that was achieved by 

solving for r letting 𝐼 𝑟  be 0.5. Therefore a closely placed Airy disk at a distance of one FWHM unit will be 

 𝐼 𝑟 − 3.24 =  
2𝐽1 𝑟−3.24 

𝑟−3.24
 

2
                                                               ------  (eq. A3.3) 

As shown in Fig. A3.1 a), when two Airy disks are just separated by a distance corresponding to just the 

FWHM, two maxima can be observed on the overlapped intensity curve (black line), i.e. they are 

theoretically distinguishable. Compare with Fig. A3.1 b), where two Airy disks are just separated by a 

distance satisfying the Rayleigh Criterion. In this latter case the peaks are more clearly resolved. Therefore 

our spectral resolution ∆ωFWHM, dominated by FWHM, is smaller than the spectral resolution ∆ωRC satisfying 

the Rayleigh Criterion. The scale ∆ωFWHM/∆ωRC is 3.24/1.22 π = 0.845. 
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 Fig. A3.1: a) Two Airy disks resolved by one FWHM unit, the red curve corresponding to (eq. 

A1.1), the green curve corresponding to (eq. A1.3), and the black curve corresponding to the intensity 

overlap, i.e. the sum of equations (eq. A1.1) and (eq. A1.3). b) Two Airy disks just resolved by the Rayleigh 

criterion. The red curve is corresponding to (eq. A1.1), the green curve is corresponding to (eq. A1.2), and 

the black curve is corresponding to the intensity overlap, i.e. the sum of equations (eq. A1.1) and (eq. A1.2).   
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Appendix 4:   
Spectral Resolution and True Raman Bandwidth 

A true Raman spectrum is here defined as a Raman spectrum excited by a hypothetically monochromatic 

light source which could be a narrow section (a delta function at ω1) of the laser spectrum as shown on Fig. 

A4.1, a).  By assuming a Gaussian approximation, the profile of a true Raman band with a FWHM bandwidth 

of ∆ωR can be described as a Gaussian function gR(ω), equation (eq. A4.1), as shown below, corresponding 

to the Fig. A4.1, b): 

 g𝑅 𝜔𝑟 = g𝑅0 ∙ exp  − 
2 ln 2 𝜔𝑟+𝜔𝑅 

Δ𝜔𝑅
 

2

                                            ------  (eq. A4.1) 

Here ωR is the Raman shift of the peak of the band and ωr is the variable of the Raman shift, gR0 is a 

constant that corresponds to maximum of the Raman peak. 

The laser spectrum can similarly be described as a Gaussian function, gL(ω), see (eq. A4.2). Note that for 

multi-longitudinal mode lasers, which are often used in Raman spectroscopy, this curve of the laser line 

may - under high resolution - show that it represents an envelopment of several longitudinal mode laser 

lines. However at lower resolution it may still give what looks like one broadened laser line in the spectrum 

(Fig. A4.1, a). 

 g𝐿 𝜔 = g𝐿0 ∙ exp  −  
2 ln 2 𝜔−𝜔𝐿 

Δ𝜔𝐿
 

2

                                               ------  (eq. A4.2) 

Here ω is the variable of absolute wavenumber; ωL is the absolute wavenumber of the laser peak; ∆ωL is 

the FWHM of the laser line spectrum and gL0 is a normalizing constant describing the maximum intensity of 

the laser. gL (ω) can be considered as a series of combined monochromatic light sources, ω1. The 

wavenumber value, ω, to give significant contributions should be in a range of a suitable size  0 < 𝜔 < ∞  . 

In the corresponding range of negative numbers  −∞ < 𝜔 ≤ 0 , the values of gL(ω) are extremely small 

because of ∆ωL << ωL. However, in order to get a convenient way of calculation, the range of ω can still be 

taken to be  −∞ < 𝜔 < ∞ . 

Now therefore the Raman spectrum, denoted gLR (ω), excited by the laser, gL(ω), ideally should be created 

as a convolution result of the equations (eq. A4.1) and (eq. A2.2) as shown in Fig. A4.1, c): 

 g𝐿𝑅 𝜔 = gL 𝜔 ⊗ g𝑅 𝜔𝑟  =  g𝐿 𝜔1 ∙ g𝑅 𝜔 − 𝜔1 ∙ 𝑑𝜔1
+∞

−∞
         

                                        = g𝑅0 ∙ g𝐿0 ∙  exp  −  
2 ln 2 𝜔1−𝜔𝐿 

Δ𝜔𝐿
 

2

 · exp  −  
2 ln 2 𝜔−𝜔1+𝜔𝑅 

Δ𝜔𝑅
 

2

 ∙ 𝑑𝜔1
+∞

−∞
 

                                        =  
g𝑅0 ∙g𝐿0∙ 𝜋

  
2 𝑙𝑛 2

Δ𝜔𝑅
 

2

+ 
2 𝑙𝑛 2

Δ𝜔𝐿
 

2
∙ exp  −  

2 ln 2 𝜔2−𝜔𝐿+𝜔𝑅 

  Δ𝜔𝑅 
2+ Δ𝜔𝐿 

2
 

2
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                                        =  𝐶1 ∙ exp  −  
2 ln 2 𝜔2−𝜔𝐿+𝜔𝑅 

  Δ𝜔𝑅 
2+ Δ𝜔𝐿 

2
 

2

                                   ------  (eq. A4.3) 

Here  𝜔1 is the integration variable and C1 is a constant: 

 𝐶1 =
g𝑅0 ∙g𝐿0∙ 𝜋

  
2 𝑙𝑛 2

Δ𝜔𝑅
 

2

+ 
2 𝑙𝑛 2

Δ𝜔𝐿
 

2
                                                                      ------   (eq. A4.4) 

In the next step, the real Raman spectrum gLR (ω) will here be denoted the spectrum of the light as it really 

is before the light is entering into the spectrometer, i. e. not the measured spectrum. Owing to the limited 

spectral resolution of spectrometer, the measured Raman signal could be considered as coming from a 

series of hypothetic monochromatic light increments that goes through the measuring process. This implies 

that each element in the gLR (ω) spectrum would be broadened to contribute a Gaussian-like bell-shaped 

curve, gs (ωs) (shown on Fig. A4.1, d)) to the measured spectrum. By assuming again a Gaussian 

approximation then each of these contributions can then be described as gs (ωs) as below: 

 g𝑆 𝜔𝑠 = g𝑆0 ∙ exp  −  
2 ln 2∙𝜔𝑠

Δ𝜔S
 

2

                                                 ------   (eq. A4.5) 

Here ωs is the variable of the wavenumber difference between the real Raman signal and the measured 

Raman signal; ∆ωS is the spectral resolution of spectrometer and gS0 is the normalizing constant. 

By summing the contributions from the all these intervals, the measured Raman spectrum, gM (ω), is the 

convolution result of the equations (eq. A4.3) and (eq. A4.5) as shown in Fig. A4.1, e): 

g𝑀 𝜔 = g𝐿𝑅 𝜔 ⊗ g𝑆 𝜔𝑠 = g𝐿 𝜔 ⊗ g𝑅 𝜔𝑟 ⊗ g𝑆 𝜔𝑠    

              =  g𝐿𝑅 𝜔2 ∙ g𝑆 𝜔 − 𝜔2 ∙ 𝑑𝜔2
+∞

−∞
        

              =
g𝑅0 ∙g𝐿0∙g𝑆0∙ 𝜋

  
2 𝑙𝑛 2

Δ𝜔𝑅
 

2

+ 
2 𝑙𝑛 2

Δ𝜔𝐿
 

2
∙  exp  −  

2 ln 2 𝜔2−𝜔𝐿+𝜔𝑅 

  Δ𝜔𝑅 
2+ Δ𝜔𝐿 

2
 

2

 
+∞

−∞
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2 ln 2∙ 𝜔−𝜔2 

Δ𝜔𝑆
 

2
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              =
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1
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1
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2

+ Δ𝜔𝐿 
2+

1

 Δ𝜔S  
2 
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2

                                                  ------   (eq. A4.6) 

Here 𝜔2 is the integration variable and C2 is a constant: 

 𝐶2 =
g𝑅0 ∙g𝐿0∙g𝑆0∙𝜋

4𝑙𝑛2∙  
1

 Δ𝜔𝑅 
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1
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1
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+ Δ𝜔𝐿 
2+

1

 Δ𝜔𝑆 
2 

                          ------   (eq. A4.7) 
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According to this expression of the convolution result, equation (eq. A4.6), the measured bandwidth of the 

observed Raman band must be given by the denominator: 

 Δ𝜔𝑀 =   Δ𝜔𝑅 
2 +  Δ𝜔S 

2 +  Δ𝜔𝐿 
2                                         ------    (eq. A4.7) 

(within the assumption of Gaussian band shapes). 
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 Fig. A4.1: The relationship between the laser spectrum, the true Raman spectrum, the real 

Raman spectrum, the spectral resolution of spectrometer and the measurement of Raman spectrum under 

the Gaussian approximation; a) the laser spectrum with a monochromatic incremental section ω1; b) the 

true Raman spectrum; c) the real Raman spectrum; d) a hypothetic monochromatic signal broaden by the 

spectral resolution of spectrometer; e) the measurement of the Raman band. 
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Appendix 5:   
Expression of Spectral Resolution for Static Grating Acquisition 

When the grating is static, the angle of Ѳi is kept constant during the measurement of the Raman photons 

(see Fig. 5.1). The Raman wavenumber shift of signal incident on the center of the CCD is denoted as ω0 

(not shown in Fig. 5.1). Therefore equation (eq. 8) can be modified as 

 𝜃 = arcsin 

1

 𝜔𝐿−ω0 

2∙𝑑∙cos  
α

2
 
 +

α

2
                                                                     ------   (eq. A5.1) 

The constant Ѳi can be found by substituting equation (eq. A5.1) into equation (eq. 5) to get: 

 𝜃𝑖 = arcsin 

1

 𝜔𝐿−ω0 

2∙𝑑∙cos  
α

2
 
 −

α

2
                                                                   ------    (eq. A5.2) 

By substituting (eq. A5.2) into (eq. 1) we get 

 𝜃 = arcsin 
𝜆

𝑑
− sin arcsin 

1

 𝜔𝐿−ω0 

2∙𝑑∙cos  
α

2
 
 −

α

2
                                 ------    (eq. A5.3) 

Here it should be noted that Ѳ in equation (eq. A5.3) is a general expression and not only the condition 

corresponding to the center of the CCD. Furthermore Ѳ is a function of λ. 

If we substitute (eq. A5.3) into (eq. 4), use unit conversion and equations (eq. 10) and (eq. 11), we get: 

 Δ𝜔 𝜔𝐿 ,𝜔𝑅 ,𝐺,𝑓2,𝛼, 𝑏𝑖𝑚𝑔    

 =  𝜔𝐿 −𝜔𝑅 
2 ∙

𝑏𝑖𝑚𝑔

𝐺∙𝑓2
∙ cos arcsin 

𝐺

 𝜔𝐿−𝜔𝑅 
− sin arcsin 

𝐺

2  𝜔𝐿−ω0 ∙cos  
α

2
 
 −

α

2
          

                                                                                                                                              ------    (eq. A5.4) 

In Fig. A5.1, we show black lines for the resolution versus the Raman shift, calculated from the above 

equation for different values of the static setting ω0 of the grating. The black lines show the unusual 

(artifact) behavior, that the spectral resolution can reach 0. Actually, in this case, the grating diffraction 

angle Ѳ is simultaneously approaching 900. Such an angle, see Fig. 5.1, it is not a condition that can be 

realized because the grating will be required to have an infinite area to be able to reflect the light. 
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 Fig. A5.1:  Spectral resolution along the Raman shift axis. The green and violet lines show the 

theoretical results calculated by use of equation (eq. 12) for the central part of the CCD (in extended 

scanning mode using only few pixels). The black lines show the spectral resolution in four and three 

spectrograms excited with 514.5 and 257.3 nm lasers, respectively, recording in static mode, using many 

pixels and settings of the central pixel of the CCD at Raman shift wavenumbers of ω0 for 514.5 nm = 500, 

1500, 2500 and 3500 cm-1, and ω0 for 257.3 nm = 750, 2250 and 3750 cm-1. 
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Appendix 6:  
Mathematica program for calculating the spectral resolution. 
 

(1) Excitation wavelength, 514.5 nm; Broad opening width of the entrance slit, 140 µm.  
 

 
 
 

(2) Excitation wavelength, 257.3 nm; Broad opening width of the entrance slit, 140 µm.  
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Appendix 7:   
Mathematica program for plotting the curves of the spectral resolution vs. Raman shift. 
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Appendix 8:   
 

Laser Safety 

 

In our laboratory, we have three lasers:  

1. A diode laser, external-cavity grating-stabilized. (Model : Startbright 785-S) 

Manufacturer: Torsana Laser Technologies, A/S, DK. 

2. A Nd:YVO4 solid-state laser, intra-cavity frequency doubled. (Model:  Millennia IIS) 

Manufacturer: Spectra-Physics Lasers, Inc., USA. 

3. Ar-ion laser with Intra-cavity frequency doubling. (Model: Lexel  95-SHG-QS) 

Manufacturer: Cambridge Laser Laboratories, Inc., USA. 

The various emission wavelengths and corresponding powers are shown in Table A8.1. According to the IEC 

(International Electrotechnical Commission) laser safety standard sheet IEC 60825-1 [A8.1], these three lasers 

all are classified as Class 4 (so-called high-power) lasers that are hazardous to human eyes under any 

condition (directly or diffusely scattered) and these lasers are presenting potential skin hazards.  

The various wavelengths have different biological effects that cause various injuries. With respect to the 

skin damage, the UV light can cause erythema, pigment darkening and skin cancer [A8.2], [A8.3]. However, too 

much near infrared light (e. g. 785 nm) just cause skin burn. With respect to injury of the eyes, the situation 

is more complicated. The major danger of laser radiation is from beams entering the eye. There are five 

kinds of known eye injuries (photokeratitis, cataract, aqueous flare, retinal burn and corneal burn) which 

are caused by radiation with various wavelengths of laser light [A8.2], [A8.3]. In order to evaluate the hazards 

and achieve effective protection, it is necessary to know the mechanism of injury and the damage 

thresholds.  

The power density will depend very much on how much the laser beam is focused, diverged or diffused. 

Although a focused beam has a very high power density, it has a quite small chance of entering into the eye. 

On the other hand there is a likely risk that the direct laser beam or the diffused laser beam may irradiate 

our skin and even our eyes during the normal operation. In order to evaluate the hazards in this connection 

we need to estimate the risks. In turn we need to consider the power density of the lasers.   

We can reasonably assume that the radius of the direct beam is 1 mm. Then we use the below equation to 

estimate the power density: 

 Φd =
Power

𝜋 ·𝑟2                                                                                                   

Here φd is the power density of the direct beam, and r is the radius of beam. The power densities of our 

lasers are shown on the Table A8.1. 
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Table A8.1: The various emission wavelengths and the corresponding power of our lasers, the skin hazards 

caused by these wavelengths and their damage thresholds (assuming one second of maximum exposure) 
[A8.2], [A8.3]. 

Laser 
 

Wavelength 
(nm) 

Power 
(mW) 

(full power) 

Power density  
 (W/cm2) 
(For beam 

radius=1 mm) 

Effect on skin 
& 

the Damage 
Thresholds 

(W/cm2) 

Effect on the 
eyes  & 

the Damage 
Thresholds 

(W/cm2) 

 
Startbright 785-S 

 
785.0 

 
500 

 
15.9 

 
Skin burn; 

28 

Cataract, 
Retinal burn; 

5×10-3 

Millennia IIS 532.0 4000 127.4  
Skin burn, 
Pigment 

darkening; 
 

4 

 
Retinal burn; 

 
 
 

10×10-3 95-SHG-QS 

514.5 2500 79.6 

496.5 900 28.7 

488.0 2100 66.9 

476.5 870 27.7 

457.9 420 13.4 

257.3 213 6.8 Erthema, 
Skin cancer; 

3×10-3 

Photokeratitis; 
 

10×10-3 
244.0 100 3.2 

229.0 10 0.32 

 

 

Injuries of the Skin. 

The layers of the skin that are of concern in a discussion of laser hazards are the epidermis and the dermis. 

The epidermis layer lies beneath the corneum (that is made of dead, flat skin cells) and is the outermost 

living layer of the skin. The dermis mostly consists of connective tissue and lies beneath the epidermis. Fig. 

A8.1 shows the typical three uppermost layers of the skin. The depths of penetration into the skin depend 

much on the wavelengths. The near infrared light has the maximum depth of penetration. In the range of 

UV radiation, most of the radiation is absorbed by the outer dead layer of the skin. Even so, the damage 

threshold for the DUV light is still much smaller than for the visible light, as shown in Table A8.1. This is so, 

because DUV is highly injuring to the skin by damaging the DNA material in the living cells.  

By comparing with the damage threshold and the power density of our laser lines (in Table A8.1), it is clear 

that all of the laser beams are harmful to the skin. Especially, the power density of the 257.3 nm DUV laser 

line is two thousand times higher than the damage threshold.  

Unlike UVA (400 – 315 nm) or UVB (315 – 280 nm), DUV may be seen as an unnatural kind of light because 

the aerosphere blocks all of the DUV light from sun. The injury of long term exposure to DUV radiation is 

still lacking investigation. Therefore, one should avoid the exposure to the DUV radiation as much as 

possible.   
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Fig. A8.1: The penetration of various wavelengths to the skin. [A8.3] 

 

 

Injuries of the Eyes. 

Laser radiation injury to the eye is considered more serious than injuries to the skin, since functional loss of 

an eye is more debilitating than damage to the skin. The eye is the organ most sensitive to light. A laser 

beam with low divergence entering into the eye - in the worst case - can be focused down to a spot of 10 to 

20 μm in diameter on the retina. Thus, even a low-power laser (in the milliWatt range) can cause retina 

burn.  

Example: A 5 mW visible laser beam focused to 100 μm2 corresponds to  

 
5 𝑚𝑊

100 µ𝑚2 = 50000 
𝑊

𝑐𝑚 2  

In Table A8.1 one sees that this value dramatically exceeds the threshold of retina damage. However, not 

all kinds of radiation can reach retina. As shown in the Fig. A8.2, almost all of the DUV light is absorbed by 

the cornea, so overexposure to the UVC and UVB radiation causes photokeratitis. Photokeratitis, also called 

snowblindness, is a burn of the cornea by UV rays. In the range of UVA the principal absorber is the lens, so 

an overexposure to the UVA radiation causes cataract. Cataract is a clouding that develops in the crystalline 

lens of the eye or in its envelope. A cataract state can also be caused by overexposure of infrared light.   
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The eye damage thresholds of various wavelengths all are very low, as shown in Table A8.1. We can see 

that the eye damage threshold of the DUV light is same as for the different kinds of visible light. Comparing 

the damage thresholds, the eye threshold is even higher than the skin threshold when the wavelength is in 

the range of DUV. The reason for this might be that the corneal tissues regenerate very quickly, in less than 

24 hours. 

 
 Fig. A8.2: The penetration of various wavelengths into the eye. 

 

 

The methods of protection 

 Warning signs and Labels 

As mentioned above all direct beams of our lasers are dangerous to the skin and the eyes. The laser 

entrance and the path of laser beam should therefore be noticed by a warning sign or label. This is   

especially important for invisible laser beams, such as the DUV radiations. 

 Beam blocks and Dumps 

Beam blocks, backstops, traps, dumps, and stops provide means to terminate unneeded laser energy and 

to keep beams confined to a particular area, such as the optical table. The beam blocks should preferably 

be made from aluminium or brass with a rough and blackened surface. Here we introduce a simple and 

functional beam stop, a reversed J-shaped tube (as shown in Fig. A8.3). Such a simple devise will effectively 
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trap the laser beam and minimize the diffusive light. It is well suited to stop a harmful DUV laser beam. It 

also works for the strong visible laser beam.  

 

Fig. A8.3:  A simple and functional laser beam stop. 

 Protective Eyewear 

Eyewear is the most important method to protect the eyes in the laboratory. Commercial safety eyewears 

(laser goggles) are made by treated plastic absorbing particular ranges of the wavelength. In order to make 

sure that the right eyewear is chosen every time, it is necessary to put a descriptive label on each eyewear. 

We have chosen laser safety glasses LG3 and LG4 (produced by Thorlabs) which block the light in the range 

of 190 – 532 nm and 625 – 850 nm, respectively. Therefore, LG3 is suitable for eye protection from the 95-

SHG-QS and Millennia IIS lasers, and LG4 is suitable for eye protection from the Starbright 785-S laser. 

 
[A8.1] Safety of laser products - Part 1: Equipment classification and requirements (2nd ed.). International 

Electrotechnical Commission. 2007.  
[A8.2] D.C.Winburn, Practical laser safety, Dekker, New York, (1985), pp.20-28.  
[A8.3] Ken Barat, Laser safety management, Taylor & Francis, New York, (2005), pp.19-23.
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Experimental and ab initio DFT calculated Raman Spectrum of Sudan I,  
a Red Dye 
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Experimental and ab initio DFT calculated
Raman spectrum of Sudan I, a red dye
Andreas J. Kunov-Kruse,a Steffen B. Kristensen,a Chuan Liub

and Rolf W. Bergb∗

The red dye Sudan I was investigated by Raman spectroscopy using different excitation wavelengths (1064, 532 and 244 nm).
A calculation of the Raman spectrum based on quantum mechanical ab initio density functional theory (DFT) was made using
the RB3LYP method with the 3-21G and 6-311+G(d,p) basis sets. The vibrations in the region 1600–1000 cm−1 were found to
comprise various mixed modes including in-plane stretching and bending of various C–C, N–N, C–N and C–O bonds and angles
in the molecule. Below ∼900 cm−1, the out-of-plane bending modes were dominant. The central hydrazo chromophore of the
Sudan I molecule was involved in the majority of the vibrations through N N and C–N stretching and various bending modes.
Low-intensity bands in the lower wavenumber range (at about 721, 616, 463 and 218 cm−1) were selectively enhanced by the
resonance Raman effect when using the 532 nm excitation line. Comparison was made with other azo dyes in the literature on
natural, abundant plant pigments. The results show that there is a possibility in foodstuff analysis to distinguish Sudan I from
other dyes by using Raman spectroscopy with more than one laser wavelength for resonance enhancement of the different
bands Copyright c© 2011 John Wiley & Sons, Ltd.

Keywords: azo dye; DFT calculation; Sudan I; resonance enhancement

Introduction

In recent years, public attention has been drawn to a group of
red and orange azo dyes comprising Sudan I, II, III and IV. Several
European control authorities have discovered the presence of
these cheap dyes in a series of imported food items.[1] Especially,
Sudan I (Fig. 1) is considered to be toxic, and it has been proven
by in vitro[2,3] and in vivo studies that it is carcinogenic to rats,
which are known to have a metabolic system very similar to that
of humans. Therefore, Sudan I could be carcinogenic to humans
as well.[2 – 4] A series of detection methods have been developed,
most of them based on liquid chromatogaphy.[1,5 – 7] The recently
applied methods for Sudan I give detection limits on the order of
around 0.5 ppm.[2] No known threshold limit seems to exist with
respect to long-term health risks, and therefore there is a need for
further development of the detection methods.

Raman spectroscopy can offer a novel and fast method for in situ
and on-location detection of Sudan dyes during food control. The
detection of Sudan I by surface-enhanced Raman scattering (SERS)
spectroscopy and surface-enhanced resonance Raman scattering
(SERRS) spectroscopy can offer very accurate analysis methods
with detection limits below 0.20 ppm.[8] Although the methods
have been demonstrated, the extent of scientific literature on
the Raman spectra of Sudan dyes is very limited, with very few
articles having been published so far. Thus until recently, only SERS
spectra of Sudan II and IV were reported,[9,10] with only two articles
dealing with spectra of Sudan I: the first one[11] by using a range of
excitation lines, with respect to resonance Raman (RR), SERS and
SERRS, as well as a calculated spectrum by the use of low-level PM3
semiempirical methods; and the second one[12] using a portable
spectrometer with SERS and multivariate chemometrics to obtain
quantitative analysis down to 10−4 mol l−1.

A deeper understanding of the chemistry and structure of these
planar molecules is needed to develop a Raman-based precise

method that will be able to distinguish the Sudan molecules from
other azo dyes. The current problem of distinguishing Sudan I
from naturally abundant carotenoids – especially capsanthin – is
difficult because of the almost identical absorption maxima,[2,13]

and this will be treated in the present article.
In the following, first, new and better ab initio DFT calculations

are presented. Then the experimental Raman spectra of Sudan
I with different excitation wavelengths are given, followed by
an attempt to correlate the experimental vibrational peaks in
the Raman spectrum to the results of the DFT calculations in
order to understand the nature of the vibrations in the Sudan I
molecule. Finally, we will make some general conclusions about the
characteristic vibrations in the Sudan group of molecules, based
on the measured spectra, in comparison with the calculations and
spectra from the literature.

Structure of Sudan I

The structure of azo dyes has been intensely discussed in
the chemical literature. The azo dyes formally contain the azo
group –N N–, but are in most cases partly or completely
transformed into the tautomeric hydrazo form (Scheme 1). Initially
our geometry optimizations were done on both forms. However,

∗ Correspondence to: Rolf W. Berg, Department of Chemistry, Technical Univer-
sity of Denmark, Kemitorvet, Building 207, DK-2800 Kgs. Lyngby, Denmark.
E-mail: rwb@kemi.dtu.dk
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b Department of Chemistry, Technical University of Denmark, Kemitorvet,
Building 207, DK-2800 Kgs. Lyngby, Denmark

J. Raman Spectrosc. 2011, 42, 1470–1478 Copyright c© 2011 John Wiley & Sons, Ltd.
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Experimental and theoretical Raman spectrum of the dye Sudan I

NN

HO

NN

O

H

(a) (b)

Scheme 1. The tautomeric inversion of Sudan I: (a) the azo form and (b) the hydrazo form. The equilibrium is shifted far to the right.

Figure 1. The optimized structure of Sudan I. C: carbon, N: nitrogen and O:
oxygen. The numbers 1–19 refer to the numbering of C, N and O atoms in
the molecule. The same numbering also refers to the H atoms adjacent to
the C, N and O atoms.

the azo forms gave poor resemblance to the experimental
spectrum irrespective of whether the H atom on O was pointing
away from or toward the nearest N (giving minimum energies
of −801.8223 or −801.8449 a.u. and dipole moments of 1.7653
or 1.0586 debye, respectively). In contrast to this, the calculated
spectrum for the hydrazo form showed good resemblance to
the experimental spectrum (giving a lower minimum energy of
−801.8470 a.u. and a dipole moment of 1.6966 debye). These
observations are supported by results in the literature,[11] in which
Sudan I was found to be exclusively in the hydrazo form. Therefore,
we only report our hydrazo results. The recently published work[12]

on SERS analysis of Sudan I, unfortunately, does not mention the
hydrazo form and the results were discussed as if Sudan I was in
the azo form.

Experimental

Sudan I (C16H12N2O, 1-(2-phenyldiazenyl)-2-naphthalenol, CAS
Reg. no. 842-07-9) in pure powder form, obtained from Aldrich,
was used without further purification in all experiments. Extra
virgin olive oil (low acidic, from Italy) and dichloromethane
(CH2Cl2, CAS Reg. no. 75-09-2) in pure state (Merck, Pro Analysi
grade) were used as solvents to dissolve Sudan I. The solutions
(nearly saturated) were made to avoid melting and decomposition
of the red dye sample during illumination due to its strong
absorption of green and blue light.[1] A DILOR-XY (Horiba-JY)
Raman spectrometer was used in the visible range by applying
a few milliwatts of radiation at 532 nm (from a Nd : YVO4 laser
equipped with a frequency-doubling device based on crystalline

LiB3O5). A beam-splitter-coupled optical microscope was used to
focus the laser beam onto the sample and to collect the light. The
Rayleigh scattered light was filtered off by using a notch filter, and
the remaining scattered light was dispersed by a 1800 g mm−1

grating and collected on a charge-coupled device (CCD) cooled
to 140 K with liquid nitrogen. The broad background due to,
e.g. fluorescence was stepwise fitted with second- or third-order
polynomials and subtracted from each frame before merging to
obtain the spectrum. Calibration was done using the Raman lines
of cyclohexane. Both the solvent and the saturated solution were
measured as drops on an aluminum foil or (for CH2Cl2) inside thin-
walled quartz capillaries to avoid decomosition. The UV excitation
was obtained with a frequency-doubled Ar+ LEXEL gas laser
working at 488 nm to obtain up to 100 mW of 244 nm radiation.
The UV-excited spectra (resolution ∼8 cm−1) were recorded with
a Renishaw InVia Raman microscopy spectrometer with UV optics,
high bandpass filters and an UV-enhanced CCD detector cooled
to low temperatures. The measurements were repeated in the
infrared range on a Bruker-IFS66 FRA-106 Fourier transform Raman
spectrometer by using about 100 mW of Nd : YAG IR laser light
at 1064 nm. Two hundred scans were recorded and averaged for
each spectrum. Further details on the used Raman spectrometers
are described elsewhere.[14 – 17]

Computations

The optimization of the structure and the calculation of spectra
were performed with the Gaussian 03 W software package.[18]

The structure of the Sudan I molecule and its vibrations (in both
its azo and hydrazo forms) were obtained in three subsequent
calculations, in order to determine the global minimum in an
efficient way. Initially, each geometry was roughly optimized
using the semiempirical PM3 type procedure, followed by the
ab initio Hartree–Fock/DFT method with third order restricted
Becke–Lee–Yang–Parr procedure (RB3LYP), first with the 3-21G
basis sets and then using 6-311+G(d,p) basis sets to calculate the
structure and vibrational spectra. The scaling factor was chosen to
be 0.976 on the basis of results from Ref. [19], where a number of
calculated and experimental spectra of C-, H-, N- and O-containing
compounds were compared using several basis sets to find the
best scaling factor.

Results and Discussion

The obtained Raman data can be seen in Fig. 2, showing the
spectra of the pure solvents, olive oil (a) and dichloromethane
(c) and (e), of Sudan I dissolved in these solvents (b), (d) and (f), and
of the pure Sudan I (g), under different kinds of laser excitation,
together with the calculated Raman spectrum. The spectra of

J. Raman Spectrosc. 2011, 42, 1470–1478 Copyright c© 2011 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/jrs
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dichloromethane were in accordance with those reported in the
literature.[20] A summary of the measured and calculated spectra
is shown in Table 1, as well as the approximate assignments of the
vibrational modes, derived from the calculations and read off a
computer screen by the use of the GaussView G03W program.[18]

The spectrum of the Sudan I dissolved in the solvents olive
oil (Fig. 2(b)) or in CH2Cl2 (Fig. 2(d) and (f)), showed practically
no characteristic bands due to the solvents, even though these
solvents have very strong bands (Fig. 2(a),(c) and (g)). The reason
must be that Sudan I, as a solute, gives a very strong spectrum.
Most probably, this is due to RR enhancement effects, which are
different for green (b) and (d) and UV excitation (f). The spectra
obtained with green excitation resemble the FT-Raman spectrum
of pure solid Sudan I obtained with infrared excitation (Fig. 2(g)).
The intensities of the peaks in the spectra (b) and (d) obtained with
green light were very similar, except in the region below 900 cm−1

where some of the bands of dissolved Sudan I appeared stronger.
In the spectrum obtained with the UV light, the bands around
1600 cm−1 are very strongly and selectively enhanced, whereas
the other bands are not seen. One might suspect that Sudan I could
be sensitive to photolysis during UV illumination, but this does
not seem to be the case, judging from the spectrum of the solid.
The observed spectrum, as shown in Fig. 3(a), appeared stable and
had bands resembling those from the infrared experiment (b) and
the calculated spectrum (c).

Assignment of Vibrational Modes

The C–H/N–H stretching transitions appear weakly in both
experimental and theoretical spectra. Two very weak bands at
3067 and 3039 cm−1 and a shoulder at 3059 cm−1 are present,
corresponding to C–H and N–H stretchings, correlating to modes
87–76 in Table 1.

A very strong band is present at 1596 cm−1 (with several weaker
shoulders), very close to the predicted position. This band is
assigned to mainly aromatic C–C stretching in the phenyl ring, in
accordance with other studies of azo dyes,[21,22] but C–H as well as
N–H in-plane bendings also contribute significantly to the mode.
A band of medium intensity at 1546 cm−1 could be described
by mode 69 and 70 transitions, both of which comprise H–N N
bending, C C strethcing and C O stretching. For both modes, a
strong contribution from N–H in-plane bending seems probable.
A strong band at 1494 cm−1 and a shoulder at 1481 cm−1 probably
correspond to modes 68 and 67, respectively, composed of mainly
C C stretching and C–H in-plane bendings. C O and N C
stretchings are also contributing to mode 67, which is observed as
a shoulder. A band at 1448 cm−1 of weak to medium intensity is
accurately predicted by mode 65, comprising mainly in-plane C–H
bending and C C stretching in the naphtalene unit, as well as
in-plane bending of the N–H bond. A very strong peak is located at
1388 cm−1 with a significant shoulder at 1410 cm−1 and a poorly
resolved shoulder at around 1370 cm−1. These features could be
explained by modes 63 and 64, which are rather complex and
share similarities such as strong C–N stretching and C–H and N–H
in-plane bendings as well as some C C strecthing. Significant
N N stretching and some C O stretching are also contributing
to mode 63. The band of medium intensity at 1340 cm−1 with a
shoulder at 1333 cm−1 would correspond to modes 61 and 60,
respectively. Mode 61 consists of C C stretching and in-plane
C–H bending in the naphtalene unit and stretching of the C9–N
bond. Mode 60 resembles mode 61, but the phenyl unit is more

active in the vibration with respect to C C stretching and C–H
bending, and with pronounced stretching of the N N bond.

The rest of the region down to around 1018 cm−1 is very
complex, and the spectrum consists of several bands, some
of them strong but most of them showing rather low Raman
intensity and appearing only as shoulders or weak bands. At least
13 features in this region could be identified, but judging from the
asymmestrical shape of several of these bands, it seems that there
are even more features hidden underneath some of the more
intense bands. The complexity of the experimental spectrum is in
accordance with the calculated spectrum of this region, in which 14
different modes are predicted, most of them of extensively mixed
origin. The modes 59 and 58, for example, comprise extensively
coupled N N, C O, C C stretchings and in-plane C–H and N–H
bendings. In the middle part of the region (for modes 57–53) the
amount of C–C stretching is gradually descreasing, whereas the
amount of C–C–C angle deformations are increasing the lower
the wavenumber region. The C–C stretchings still participate and
N–C stretchings also contribute to many of the modes. For the
lower wavenumber modes in this region, above 1000 cm−1, the
C–C stretchings are taking part actively, but now participating in
the ring breathings, resulting in asymmetrical deformations of the
aromatic rings.

A doublet of medium intensity is found with peaks at 1001 and
984 cm−1, and these bands are predicted very accurately by modes
45 and 43. Both modes include breathing and deformations.
Especially, mode 45 could be described by a triangular ring
breathing movement. The mode mainly involves three carbon
atoms out of the six-membered ring performing a symmetrical
breathing-like deformation, resulting in the ring approaching a
triangular shape (Fig. 4, mode 45). In this mode, the phenyl ring
and ring 3 of the naphtalene unit are both performing triangular
breathing, but are out of phase with each other, thereby cancelling
out some of the large change of polarizabillity (and intensity)
often seen for aromatic breathing modes. Mode 43 comprises
conventional breathing of the phenyl ring and triangular breathing
of the naphthalene ring 3, as well as C–N N and N–H in-plane
bendings, resulting in a medium intensity band.

The region below 980 cm−1 contains serveral weak bands. In
general, these are quite accurately predicted in the calculated
spectrum with respect to band positions and relative intensities.
Many of the modes have been excluded from Table 1 in this region.
They generally comprise out-of-plane and in-plane C–C–C, C–H,
N–H and C–C–N angle deformations. The Raman active modes
are mostly very weak, involving many of the atoms in the molecule
in unique movements, typically compressing or elongating parts
of the molecule in one direction as well as rotations involving
also larger parts of the molecule. However, some of the modes
deserve attention, especially the four observed bands at around
721, 616, 463 and 218 cm−1, which are interesting because
they may have analytical applications. This is so because their
intensities seem to be selectively enhanced by the green laser
(Fig. 2 bottom right). Looking at the corresponding modes in the
calculation (Table 1), it appears that they all involve displacements
around the chromophoric azo group, suggesting strongly that the
intensity enhancement is caused by the RR phenomenon related
to electronic absorption in the hydrazo group.

To conclude, the calculated spectrum overall fits the experi-
mental results quite well. The calculations suggest that the nature
of the bands at around 1600–1500 cm−1 are rather complex
but have been oversimplified in previous studies. In accordance
with these previous studies, we also assign many of these vibra-
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Table 1. Experimental Raman spectrum (cm−1) compared to the calculated modes of the Sudan I in the hydrazo form

Mode
no.

Experimentala

cm−1 Intensity
Calculatedb

cm−1
Intensity
Å2/amu Assignmentsc

87 3139 35 C–H stretch (ph)

86 3132 55 C–H stretch (naph)

85 3067 vw 3118 380 C–H stretch (ph)

84 3117 209 C–H stretch (naph)

83 3112 306 C–H stretch (naph)

82 3059 sh 3106 157 C–H stretch (ph) + N–H stretch

81 3105 747 N–H stretch

80 3097 110 C–H stretch (ph)

79 3039 vw 3096 133 C–H stretch (naph)

78 3091 17 C–H stretch (ph)

77 3087 90 C–H stretch (naph)

76 3079 64 C–H stretch (naph)

75 1616 sh 1621 60 C O + C C stretch (naph ring 2) + N–H
bend

74 1600 sh 1606 101 C–H ip bend (naph) + C C stretch (naph)
+ N–H bend + N N/C–N stretch

73 1596 vs 1598 2378 C–H ip bend (ph) + C C stretch (ph) +
N–H bend + N N/C–N stretch

72 1590 122 C1–N–H scis + C C stretch (ph + naph)
+ C–H bend

71 1572 80 C1–N–H scis + C O stretch + C C
stretch + C–H bend

70 1546 m 1545 164 C C stretch (naph) + H–N N bend +
C O stretch

69 1528 955 H–N N bend + N N stretch + N C9
stretch + C O stretch

68 1494 s 1488 723 C C stretch (ph) + C–H ip bend (ph)

67 1481 sh 1475 104 C C stretch (naph) + C O stretch +
N H + C–H ip bend

65 1448 s 1444 181 C–H + N–H ip bend + asym C–C stretch
(naph)

64 1410 sh 1397 337 C–N stretch (ph + naph) + N–H ip bend +
C–H ip bend

63 1388 s 1391 750 C–N stretch (ph + naph) + C O stretch +
C–H ip bend

1370 sh

62 1340 m 1328 109 N N + C O stretch + C C (ph)
stretch/C–H ip bend (ph)

61 1333 sh 1321 273 C C stretch (naph)/C–H ip bend (naph) +
N–C9 stretch

60 1322 sh 1317 464 C C–N bend (ph + naph) + N N stretch
+ C C stretch + ip N–H bend

59 1298 vw 1300 46 N N + C O + C C stretch, ip N–H and
C–H bend

58 1287 288 N N stretch + N–H ip bend, N–H ip bend,
C O stretch

57 1257 m 1242 220 C9–C10–C12 stretch and bend + C–H ip.
bend (naph)

56 1227 s 1228 1182 C–H + N–H ip bend + N–C1 stretch C C
stretch (naph)

55 1203 w 1205 70 C–H ip bend + C–N stretch + C C stretch
(naph)

54 1184 w/sh 1181 12 C–H + N–H ip bend + N–C1 stretch +
C–C–C bend

53 1169 m 1161 403 C–H + N–H ip Bend N–C1 stretch +
C–C–C bend

52 1151 w 1154 20 C–H ip bend and C–C–C bend

51 1140 sh. 1151 70 C–H + N–H ip bend and C–C bend

50 1118 Sh 1130 24 C–H ip bend and C–C–C bend (naph)

49 1095 w/md 1093 60 ip C–C–C bend/stretch + C–H bend +
C N stretch
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Table 1. (continued)

Mode
no.

Experimentala

cm−1 Intensity
Calculatedb

cm−1
Intensity
Å2/amu Assignmentsc

48 1072 vw 1076 9 ip C–H bend + C–C–C bend + stretch

47 1038 vw 1035 38 C–H ip bend + asym breathing + C C
stretch (naph)

46 1018 vw 1018 14 asym breathing + C C stretch (ph) + ip
C–H bend (ph)

45 1001 m 988 167 triang breathing (ph) + N N–C (naph) +
N–H ip bend

43 984 m 980 202 N N–C (naph) + H–N bend + breathing
(ph) + (naph ring 3) breathing + C–C
stretch (C9–C10)

34 846 vw 843 21 N–N–H bend + C–N N (ph) bend + C–H
ip bend

30 752 vw 750 6 C–H oop bend (ph)

28 744 20 C–N stretch (ph) + C C bend (ph + naph)
+ C C stretch (naph)

27 721e vw/md 718 59 breathing (naph) + C–C–N + N N–C +
C C–C ip bend (ph)

651 vw

23 616e vw/md 616 14 C C–C ip bend (ph) + C–C–N ip bend (ph
+ naph)

22 585 vw 583 57 C C–C ip bend + ip N–N–C bend (ph +
naph) + C O ip bend

21 525 vw 540 4 C C–C ip bend + ip N–N–C bend (ph +
naph)

501 vw

16 463e vw/md 460 19 C C–N ip bend + C C–C ip bend +
C–C O ip bend

15 419 12 C C–N ip bend + C C–C ip bend (naph)

11 362 vw 361 22 N–C–C ip bend (ph + naph) out of phase

310 vw

7 218e vw/md 211 6 N–C–C ip bend (ph + naph) in phase

6 159 vw 179 3 C–C–H, C C–C, N N–C oop bend

Assignments (approximate descriptions of the modes) have been obtained from the calculated gas phase results [Gaussian/DFT/B3LYP/6-311+G(d,p)]
observing the modes on a computer screen. Certain modes have been omitted to make the table shorter.
a The given measured wavenumbers were obtained on the Bruker FT-instrument.
b The calculated wavenumbers have been corrected with a factor of 0.976 according to Fairchild et al.[19]

c Stretch, stretching; bend, bending; ip, in-plane; oop, out-of-plane; asym, asymmetric; sym, symmetric; scis, scissoring; triang, triangular; ph: phenyl
ring; naph, naphthyl ring.
d These bands were significantly enhanced when using the green laser.
e Analytically interesting bands, see text.

tions to modes with pronounced C–C stretching in phenyl and
naphthalene rings.[11,22,23] However, our calculations show that
other modes such as movements within the hydrazo group also
contribute significantly. Our calculations also indicate that the hy-
drazo group is involved in most of the vibrations through N–H and
C–N N bendings and C–N stretchings. The hydrazo group also
is the chromophore in the molecule, and therefore these features
make the Sudan I molecule very suitable for RR spectroscopic
investigations.

The intensities of the bands below 900 cm−1 seem to be quite
sensitive to the laser wavelength and the sample environment.
A similar effect was reported in Refs [9 and 10] concerning the
spectra of the related azo dyes Sudan II and Sudan IV. Sudan II
has the same structure as Sudan I, but with two methyl groups
substituted on the phenyl ring in ortho and para positions. Sudan
IV also has a methyl group on the phenyl ring in the ortho position,
but has a further azo-toluene unit on the first phenyl ring in the para
posistion. SERS spectra of Sudan II on various nanowire areas with

IR excitation (1064 nm) have shown very similar trends, although
they depend somewhat on the type of the metal substrate used.[9]

Similarly, for Sudan IV the SERS spectrum below 1000 cm−1 has
been recorded with IR excitation (1064 nm), showing several new
features not seen in the regular Raman spectrum.[10]

Similarities between Azo Dyes

The Raman spectrum of Sudan I has striking similarities with the
Raman spectra of other similar azo dyes. Because of their low
toxicity, many sulfonated azo dyes are widely used in the food
industry. The use of Raman spectroscopy for the detection of
toxic azo dyes therefore demands a specific knowledge about
other similar azo dyes. A typical example is Orange II, which
is very similar to Sudan I, the only difference being a single
SO3Na group substituted in para position to the C–N group
in the phenyl ring. The spectrum in the region from 1600 to
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Figure 2. Raman spectra of (a) pure olive oil (excitation: green laser, 532 nm), (b) Sudan I in olive oil (nearly saturated. Excitation: green laser, 532 nm),
(c) pure CH2Cl2 (excitation: green laser, 532 nm), (d) Sudan I in CH2Cl2 (excitation: green laser, 532 nm), (e) pure CH2Cl2 (excitation: UV laser, 244 nm),
(f) Sudan I in CH2Cl2 (nearly satureted. Excitation: UV laser, 244 nm), (g) Sudan I powder (excitation: infrared laser, 1064 nm) and (h) calculated Raman
spectrum, wavenumber corrected with a factor of 0.976. Top: Full spectra. Bottom left: Zoom of the region 1800–900 cm−1. Bottom right: Zoom of the
region 900–200 cm−1. Note: In the top graph, the spectrum of the C–H stretching region of (a) is also shown, decreased by a factor of 0.1, and for spectra
(f) and (g) selected parts are also shown, magnified by a factor of 10. The spectra have also been arbitrarily scaled and shifted. The band at 2331 cm−1 in
(c) and (e) is due to N2 gas.
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Figure 3. Raman spectra of solid Sudan I obtained with (a) 244 nm UV light and (b) 1064 nm IR light. Useful spectra could not be obtained with green or
blue light. The calculated spectrum is shown as (c). The band at 2331 cm−1 in (a) is due to N2 gas.

1300 cm−1 shows almost identical features. Below this region, the
spectra look very similar, but larger deviations in the wavenumber
shift values occur.[23] Also, the azo dye Amaranth (Azorubin S
or tri-sodium (4E)-3-oxo-4-[(4-sulfonato-1-naphthyl)hydrazono]-
naphthalene-2,7-di-sulfonate, CAS Reg. No. 915-67-3), previously
much used in foodstuffs, can be described as a triple sulfonated
double naphthyl analog of Sudan I. Although the spectra look very
similar to that of Sudan I in the region 1600–1100 cm−1, the values
of the Raman shifts deviate sufficiently to distinguish them.[22]

The structure of the sulfonated yellow azo dye Tartrazine (1H-
pyrazole-3-carboxylic acid, 4,5-dihydro-5-oxo-1(4-sulfophenyl)-4-
[(4-sulfophenyl)azo] tri-sodium salt, CAS Reg. No. 1934-21-0)
differs more from the structure[21] of Sudan I. Although the
spectrum in the range 1600–1480 cm−1 shows very similar
features, many wavenumber shift values deviate considerably.
At lower wavenumbers, the spectra deviate more from each other,
and below 1000 cm−1 the Raman active bands are entirely unique.

Natural abundant cartenoids give colors to biological materials
such as plants, and are therefore present in most foodstuffs. Espe-
cially capsanthin [(all-E,3R,3′S,5′R)-3,3′-dihydroxy-β ,κ-caroten-6′-
one, CAS Reg. No. 465-42-9] and capsorubin [(all-E,3S,3′S,5R,5′R)-
3,3′-dihydroxy-κ ,κ-carotene-6,6′-dione, CAS Reg. No. 470-38-2],
found in chili and paprika, makes it difficult to detect Sudan I
in samples because they exhibit Raman and absorption maxima
at similar wavenumbers as in Sudan I.[2,13] The Raman spectra of
capsanthin and capsorubin were investigated by DFT calculations
as well as experimentally by Requena et al.[24] Even though the
structures are very different, many Raman bands for capsanthin
and capsorubin are found at more or less the same positions[24] in
the region from 1600 to 1100 cm−1. The best way to distinguish
these molecules by Raman spectroscopy is to take advantage of
some very intense bands in the spectra of capsanthin and capsoru-
bin at around 1100–900 cm−1, where the spectrum of Sudan I only
shows weaker features as well as the considerable contribution to
the spectra from C–H stretching in the spectra of the cartenoids.

Resonance Raman Effects

Shadi et al. at an ICORS conference reported resonance enhance-
ment of the peaks in Sudan I at 1234 and 1598 cm−1 when using
a 632.8 nm laser.[8] This feature is supported by our calculations,
which just show contribution to those bands from C–N bending
and stretching modes in the hydrazo chromophore group. The RR
effects in Sudan I spectra have systematically been investigated by

Munro et al.[11] in the range 1180–1618 cm−1. Using different laser
wavelengths from 501 to 613 nm, they observed that a 501 nm
green laser line gave the strongest RR effect in this region of the
spectra.[11] According to their calculations, which were based on
the low level semiempirical PM3 method, the vibrations in this part
of the spectrum were mostly due to isolated C–C vibration modes,
whereas our calculations show rather significant contributions
from C–C–N bendings as well as C–N and N N stretchings in this
region. Additional peaks below 1100 cm−1 were also amplified
because of RR effects when using a 613 nm laser.

The spectrum of Sudan I in olive oil measured with the
532 nm laser clearly showed an enhancement of several orders
of magnitude for the intensity of the bands at 721, 616, 463 and
218 cm−1. In Fig. 4(f)–(h), three diagrams of the corresponding
calculated modes can be seen (modes 23, 16 and 7), and it is
obvious that they all involve extended bending of the C–N–N–C
skeleton. Though overtones and progressions could not be found
(perhaps due to overlaps with more intense bands), it still is
an indication of a RR effect arising from these vibrations. The
resonance at these wavenumbers has a potential use as a means
to distinguish Sudan I from other azo dyes because this RR
pattern is likely to be unique. A procedure involving different laser
wavelengths could supply a unique fingerprint for Sudan I due
to its specific resonance enhancement at lower wavenumbers, as
used widely in the pharmaceutical industry.[25] Also, we believe
that this, in combination with the results of Cheung et al.,[12]

indicates that SERRS with different excitation wavelengths in the
fingerprint region, can indeed provide a useful technique for the
detection of Sudan I in foodstuffs.

Conclusion

Raman spectra of the red dye Sudan I were recorded using
infrared (1062 nm), green (532 nm) and UV (244 nm) laser light. The
spectra were interpreted by comparison with abinitio DFT (RB3LYP)
calculated spectra, based on 6-311+G(d,p) Gaussian orbital basis
sets in an isolated molecule approach. The vibrations in the
region 1600–1000 cm−1 were found to comprise various mixed
modes including in-plane stretching of C–C bonds. Especially,
the large contributions from N N core stretching and C–N–N
bond bending at higher wavenumbers have not been appreciated
previously. Below about 900 cm−1, many out-of-plane bending
modes were dominant. Low-intensity bands at 721, 616, 463 and
218 cm−1 were selectively enhanced by the RR effect, when using
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(a) Mode 73 (1598 cm-1) (b) Mode 69 (1528 cm-1)

(c) Mode 53 (1161 cm-1) (d) Mode 45 (988 cm-1)

(e) Mode 43 (980 cm-1) (f) Mode 23 (616 cm-1)

(g) Mode 16 (460 cm-1) (h) Mode 7 (211 cm-1)

Figure 4. Approximate diagrams of selected vibrations in the hydrazo form of Sudan I. The presented wavenumbers have been corrected with an
empirical scaling factor of 0.976[19] .

the 532 nm excitation line, relative to those obtained with 1064
or the 244 nm excitation. The spectrum of Sudan I was found to
deviate from those of other similar azo dyes, even in the intensive
range (1600–1000 cm−1). The spectra of abundant natural food
pigments, such as capsanthin and capsorubin showing similar
Raman active bands in the same wavenumber range, can be
distinguished from those of Sudan I by the spectral differences
below 1100 cm−1. The use of differences in the resonance
enhancement of various bands (marked with stars in Table 1)
with the applied lasers opens up a new sensitive method to detect
Sudan I in food based on Raman spectroscopy. Our ab initio DFT
calculations have indicated that several vibrations in the whole

investigated wavenumber range involve bending and stretching
modes – at and around the C–N N–C chromophore – making
the molecule obvious for further investigations with SERRS and/or
SERS.
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