a)

$$HCN + CH_3CO_2^-Na^+ \rightarrow Na^{+-}CN + CH_3CO_2H$$

 $pK_a: 9.31 \rightarrow 4.76$

Not likely to take place

b)

$$CH_3CH_2OH + Na^{+-}CN \rightarrow CH_3CH_2O^-Na^+ + HCN$$

$$pK_a \colon 16.00 \rightarrow 9.31$$

Not likely to take place

All carbons are sp^2 hybridized, except for the carbon indicated as sp^3 . The two oxygen atoms and the nitrogen atom have lone pair electrons, as shown.

1.64

1.64 In a compound containing a carbon-carbon triple bond, atoms bonded to the *sp*-hybridized carbons must lie in a straight line. It is not possible to form a five-membered ring if four carbons must have a linear relationship.

2.13

Staggered butane

Eclipsed butane

5-Ethyl-2-methylheptane

2,2,3,3-Tetramethylhexane

2.14

2.14 The first staggered conformation of butane (pictured above) is the most stable, because the relatively large methyl groups are as far apart as possible.

2.42

CH₃CH₂CH₂CH₂Br

CH₃CH₂CH₂CHCH₃

CH₃CH₂CH₂CH₂CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃CHCH₂CH₂CH₃

CH₃

CH₃CHCH₂CH₂CH₃

CH₃

CH₃CHCH₂CH₂CH₃

CH₃

CH₃

CH₃CHCH₂CH₂CH₃

CH₃

CH₃CHCH₂CH₂CH₃

CH₃

CH₃CH₂CH₃

CH₃

CH₃CH₂CH₃

CH₃

CH₃CH₂CH₃

CH₃CH₂CH₃

CH₃CH₂CH₃

CH₃CH₂CH₃

CH₃CH₂CH₂CH₂CH₃

CH₃CH₂CH₂CH₂CH₃

CH₃CH₂CH₂CH₂CH₂CH₃

CH₃CH₂CH₂CH₂CH₃

CH₃CH₂CH₂CH₂CH₃

CH₃CH₂CH₂CH₂CH₃

CH₃CH₂CH₂CH₂CH₃

CH₃CH₂CH₂CH₃

CH₃CH₂CH₂CH₂CH₃

CH₃CH₂CH₂CH₃

CH₃CH₂CH₂CH₃

CH₃CH₂CH₂CH₃

CH₃CH₂CH₂CH₃

CH₃CH₂CH₂CH₃

CH₃CH₂CH₂CH₃

CH₃CH₂CH₂CH₃

CH₃CH₂CH₂CH₃

CH₃CH₂CH₂CH₃

CH₃CH₂CH₃

CH₃CH₂CH₃

CH₃CH₂CH₃

CH₃CH₂CH₃

CH₃CH₂CH₃

CH₃CH₂CH₃

CH₃CH₂CH₃

CH₃CH₂CH₃

CH₃CH₂CH₃

CH₃CH₃CH₃CH₃

CH₃CH₃CH₃

CH₃CH₃CH₃CH₃

CH₃CH₃CH₃CH₃

CH₃CH₃CH₃CH₃

CH₃CH₃CH₃CH₃

CH₃CH₃CH₃CH₃CH₃

CH₃CH₃CH₃CH₃

CH₃CH₃CH₃CH₃CH₃

CH₃CH₃CH₃CH₃CH₃

CH₃CH₃CH₃CH₃CH₃

CH₃CH₃CH₃CH₃CH₃CH₃

CH

3,3,5-Trimethyloctane

$$\begin{array}{c} \text{CH}_3\\ \text{CH}_3\text{CH}_2\text{CH}_2\text{CH}_2\text{CH}_2\text{CHCH}_3 \end{array}$$

2-Methylheptane

1,1-Dimethylcyclopentane

$$\begin{array}{c} \text{(d)} & \text{CH}_3 \text{ CH}_3 \\ \text{CH}_3 \text{CH}_2 \text{CH}_2 \text{CCH}_2 \text{CHCH}_3 \\ \text{CH}_3 \\ \text{2,4,4-Trimethylheptane} \end{array}$$

trans-1,3-Dimethylcyclohexane

The lowest energy conformations of both 1,3-dimethylcyclohexanes are drawn. *cis*-1,3-Dimethylhexane is the more stable isomer because both methyl groups are equatorial in the most stable conformation. For *trans*-1,3-dimethylhexane, one methyl group must always be in the higher energy axial orientation. (A high energy diaxial conformation of *cis*-1,3-dimethylcyclohexane can also be drawn.)

2.57

2.57

The methyl groups are equatorial in the more stable chair conformation of *trans*-1,2-dimethylcyclohexane.

2.73

